Chapter 8
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En the previous chapter, we used truth-tables to evaluate arguments in statement
logic (the part of logic in which atomic statements are the basic units). We saw,
however, thwt truth tables are cumbersome when applied to arguments involving
numerous statement letters. In this chapter, we will develop a system of natural
deduction that has certain advantages over the truth table method. In a system of
natural deduction, one uses a set of inference rules to prove that the conclusion of
an argument follows from its premises. And for the purpose of proving arguments
valid, a system of natural deduction has at least two advantages over the truth
table method. First, it is less cumbersome. Second, such systems more clearly mir-
ror our intuitive patterns of reasoning (the ways we ordinarily argue) than do
truth tables. The German logician and mathematician Gerhard Gentzen (1909—
1945) was the first to develop a system of natural deduction.!

Our system of natural deduction will be introduced in stages. Section 8.1
gives us § initial rules of inference that permit us to construct a limited variety of
proofs. Sections 8.2 and 8.3 each introduce 5 more rules, bringing the togal to 18
rules. In section 8.4, we add a special rule called “conditional proof.” With the
addition of conditional proof, our system of natural deduction can prove as valid
any argument that is valid according to the truth table method. And since each
of our rules of inference is itself valid, any argument that can be proved valid in our
system of natural deduction is indeed valid. Tn section 8.5, we add one more rule,
called “reductio ad absurdum,” that makes many proofs either shorter or more
intuitive. Finally, in section 8.6, we discuss proving theorems.

8.1 Implicational Rules of inference

Let us use the word “proof” in a technical sense to refer to a series of steps that
leads from the premises of a symbolic argument to its conclusion. The funda-
mental idea is to show that the premises lead, by way of valid rules of inference,
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298  Statement Logic: Proofs

to the conclusion. The underlying principle is this: Whatever follows from a set of
statements by means of valid infevences is true if all the statements in the set are true.

Our first set of inference rules is mostly familiar. The first five were in-
troduced as argument forms in Chapter 1. Once again, we use italicized, lower-

~case letters as variables that stand for any given statement: p, g, r, and s.

Rule 1: Modus ponens IMP):  p— ¢
P
g
Rule 2: Modus tollens IMT):  p— g
~q
NP ‘:‘
Rule 3: Hypothetical syllogism {HS):  p— ¢ *
g —>r
“p—r

Rule 4: Disi‘unctive syllogism{DS), in two forms:

PVvaq pvag
~p ~q
. q op
Rule 5: Constuctive dilemma [CD): pv g
P —F
g—s
T FVsS

Note that each rule is given an abbreviation designed to cut down on the amount of writ-
ing involved in constructing proofs. To these familiar forms we add three additional
patterns of inference, two involving conjunctions and one involving disjunctions.

Rule é: Simplification (Simp), in two forms: , >
p*q peq
N S q

Simplification says, in effect, that if you have a conjunction, then you may infer
either conjunct. Here is an English example:

1. Both Pierre Curie and Marie Curie were physicists. Therefore, Marie Curie wa
a physicist, '

This type of inference may seern so obvious as to be trivial, but it is nonetheless
valid. And one aspect of the power of logic is its capacity to break complex rea-
soning down into easy steps.

The next rule tells us that if we have two statements as steps in an argu-
ment, we may conjoin them. :
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Rule 7: Conjunciion (Conj):  p
i

Again, this rule is obviously valid. Here is an example:

2. Thomas Aquinas died in 1274. William Cckham died in 1349, Consequently,
Aquinas died in 1274, and Ockham died in 1349,

The rule of addition is perhaps a bit less obvious than the rules we have
considered so far.

Rule 8: Addition {Add) in two forms:
pvg gV p '

This schema tells us that from any given statement p; one may infer a disjunc-
tion that has p as one of its disjuncts—and the other disjunct may be anything
—you please. For instance:

3. Thomas Paine wrote Common Sense. Hence, either Thomas Paine wrote
Common Sense or Patrick Henry wrote Common Sense {or both did).

This type of inference may seemn odd, but it is valid. Recall that only one dis-
junct must be true for an inclusive disjunction to be true. Thus, “Either 1 +1=2
or 2+ 2 =722 (or both)” is true, even though “Z + 2 = 22" is false. And hence,
every instance of addition. is valid since it is impossible for the conclusion of an
argument of this form to be false given that its premise is true.

Is the following argument an example of addition?

4. Adam stole the money. It follows that either Adam siole the money or Beﬁy sfole
the money, but not both. {A: Adam stole the money; B: Betly stole the money!

No. Argument (4) has the following invalid form:
“ [Av B)e~{AB)

And it is easy to construct a counterexample to this pattern of reasoning. For
instance:

6. Four is an even number. So, either 4 is even or 6 is even, but not both.
Because the premise is obviously true but the conclusion is obviously false, the

counterexample proves that form (5) is invalid. So, it is important not to con-
fuse form (5) with the rule of addition. -
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The italicized, lowercase letters in the previous argument schemas play
a special role. They can be replaced by any symbolic sentence as long as the
replacement is uniform throughout the argument. For example, both of the follow-
ing count as instances of modus ponens:

~F>G L= M= Nj
~F L
o G S M N

3

In the inference on the left, ~F is substituted for the letter p, while G is sub-
stituted for the letter g in the original schema: p — g, p .. . Note that we have
replaced p with ~F throughout the argument schema; substitutions must be
uniform in this sense. In the example on the right; L is substituted for p, while
(M = N) is substituted for ¢ in the original schema. In"both cases, the pattern
of reasoning is modus ponens because one premise is a conditional, the other is
the antecedent of the conditional, and the conclusion is the consequent of the
conditional. )

In substituting symbolic formulas for lowercase letters, precision is re-
quired. Consider the following argument. s it an instance of modus tollens?

C—=-~D
D
o ~C

No, it is not. The schema for modus tollens is p — g, ~g .. ~p. lf-we replace the
letter g with ~D in the first premise, we must replace g with ~D in the second
premise as well, in which case we obtain the following argument:

C—=~D
~~D
L ~C

This is an instance of modus tollens. To apply modus tollens, we need a conditional
and the negation of its consequent. If the consequent of the conditional is itself
a negation, such as ~D, the other premise will be a double-negation, such as
~~1) above.

To ensure an understanding of our new inference rules, let us consider a
series of examples. Which rules of inference, if any, are exemplified by the fol-
lowing arguments?

~P 5 [Q-R) Xv (Y e 7)
[(Q<Rl—= S ~{Y ¢» Z)
L~P oS soX
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The argument on the left is an example of hypothetical syllogism. Note that ~P
replaces p, (Q < R) replaces g, and S replaces r in the original schema: p — g,
g — r - p = r. The argument on the right is an example of disjunctive syllo-
gism. Here, X replaces p and (Y <= Z) replaces g in the second form of disjunc-
tive syllogism: p v g, ~q .. p.

'~ Which rules of inference, if any, are exemplified by the following arguments?

~M v ~N
~M — ~O
~N — ~P ~(B » ~C]
s ~Ov~P o ~[Be~C) v ~

The argument on the left is an example of constructive dilemma. Here, ~M
replaces p, ~N replaces g, ~O replaces r, and ~P replacés s in the schema for
constructive dilemma: pv g, p — r, ¢ — s . ¥ v s. The argument on the right is
an example of addition. Note that ~(B « ~C) replaces p, while ~D replaces g in
the first-form of addition: p . p v g. )

Which rules of inference, if any, are exemplified by the following arguments?

Av ~B
(C ~D)e(EvEF B
- EvF STA

The argument on the left is an example of simplification.-Here, (C — D) re-
places p, while (E v F) replaces g in the second form of simplification: p» g .. g.
The argument on the right, however, does not exemplify any of our inference
rules. But if we changed the second premise to ~~B, then we would have an
instance of the second form of disjunctive syllogism: p v g, ~g .. p. (Substitute
A for p and ~B for g.)

Let us now use our new inference rules to construct some proofs. We begin
with an English argument:

7. If some employees deserve 5 times the wages of others, then some employees
are 5 times more valuable than others. It is not frue that some employees are
5 times more valuable than others. So, it is not true that some employees
deserve 5 times the wages of others. (D: Some employees deserve 5 times
the wages of others; V: Some employees are 5 times more valuable than
others}

Using the scheme of abbreviation provided, the argument should be symbolized
as follows:

.DoV
2.~V - ~D

13
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The first lines of our proof contain the premises of the argument. To the right of
the last premise we write the conclusion, marked by the three-dot symbol. This
serves as a reminder of what we are trying to derive from the premises. (Thus, the
expression .*. ~D is not really a part of the proof but merely a reminder of what we
need to prove.) What we want to do is to arrive at the conclusion, ~D, by means
of our inference rules. We have a conditional premise, and we also have the nega-
tion of its consequent. That is, we have here the makings of a modus tollens—type
argument. To see this, substitute D for p and substitute V for g in the original dia-
gram for modus tollens: p — g, ~g .. ~p. Proper proof procedure requires that we
list the lines to which we are applying the rule of inference, as well as the abbreviation of
the inference rule. Accordingly, our completed proof looks like this:

s

1.D -V i
2.~V o ~D 4
3. ~D 1,2, MT

Line (3) tells us that ~D follows from lines (1) and (2) by modus tollens. We
have shown that the premises of the argument lead to the conclusion-by way of
a valid rule of inference. Notice that the only lines in the proof without annota-
tion (without an explicit indication of how we arrived at them) are the premises.
Let us adopt the convention that any step in an argument without annotation will be
understood to be a premise.

Consider a slightly more complicated example:

8. I the workplace is a meritocracy, then the most qualified person always gats
the job. But the most qualified person does not always get the job if networking
plays a role in who gefs most jobs. Furthermore, networking does play a role
in who gels most jobs. Therefore, the workplace is not a meritocracy. (W: The
workplace is a meritocracy; M: The most qudlified person always gets the job;
N: Networking plays a role in who gets most jobs)

Using the scheme of abbreviation provided, the argument should be symbolized
as follows:

1. W= M
2. N - ~M
3. N oo~

As before, the first lines of our proof contain the premises of the argument, with
the conclusion written off to the right of the last premise. The completed proof
runs as follows:

. WM
2. N = ~M
3. N s
A4, ~M 2.3, MP
5. ~W 1,4, MT
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Lines (2) and (3) imply ~M by the rule modus ponens. To see this, replace p with
N and g with ~M in the schema for modus ponens: p — g, p .. ¢. Lines (1) and
(4) imply ~W by the rule modus tollens: p — g, ~g . ~p (replacing p with W
and g with M).

Let us now consider a proof that employs our inference rules involving
conjunctions:

9. Women earn only 75¢ for every dollar earned by men. If women earmn only
75¢ for every dollar earned by men, and 90% of children who live with one
parent five with their mothers, then men are better off than women, and women
are victims of injustice. Ninety percent of children who live with one parent
live with their mothers. Feminists are right if women are victims of injustice.

So, feminists are right, (W: Women earn only 75¢ forievery dollar earned
by men; C: 90% of children who live with one parent lige with their mothers;
M: Men are better off than women; V: Women are victims of injustice;

F: Feminists are right)

Using the scheme of abbreviation provided, the translation into symbols looks

like this:

1. W
2. WeCl—= M-V
3. C
4. V—F oo F

The proof may be completed thus:

5 W-C 1, 3, Conj
6 MeV 2,5, MP
7V 6, Simp ,
8. F 4,7, MP

Note that line (5) comes from lines (1) and (3) by substituting W for p and
C for g in the schema for conjunction: p, g .. p + g. And line (7) comes from
line (6) by substituting M for p and V for g in the second form of simplifica-
tion: peg .. q.

One last example will demonstrate some of the inference rules involving
disjunctions.

10. I Pierre is an assassin, then either he should be put to death, or he should be
given a life sentence. He should be put to death only if murderers deserve
death. He should be given a life sentence only if murderers forfeit their right o
liberty. Pierre is an assassin, but murderers do not deserve death. Therefore,
murderers farfeit their right fo liberly. (A: Pierre is an assassin; D: Pierre should
be put to death; L: Pierre should be given a life sentence; M: Murderers
deserve death; F: Murderers forfeit their right to liberty)
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Using the scheme of abbreviation provided, the argument may be symbolized
like this:

1.A={Dvl

2.D-M

3. L—>F

4. Aes~M - F

The proof may be completed as follows:

5 A 4, Simp
6. Dvl 1,5, MP H
7.MvE  6,2,3CD '
8. ~M 4, Simp K
9. 7,8,DS

Note that line (7) derives from the steps indicated by substituting D for p, L
for g, M for r, and F for s in the-original schema for construetive dilemma: p v g,
p—rg—s .. rvs Andline (9) derives from lines (7) and (8) by substituting
M for p and F for ¢ in the first form of disjunctive syllogism: p v g, ~p . q.

Qur first eight inference rules are called implicational rules to set them
apart from equivalence rules, which will be introduced in the next section.
When using an equivalence rule, one always moves from a single statement
(such as ~H ¢ J) to another statement that is logically equivalent to the first
(such as J « ~H). (Recall that logically equivalent statements validly imply each
other. They agree in truth value regardless of the truth values assigned to their
atomic components.) But implicational rules lack this feature. For example, we
may move from F » G to F by simplification, but obviously F is not logically
equivalent to F + G. Because of this difference between implicational and equiv-
alence rules, implicational rules must be applied to entire lines in a proof and
not merely to parts of lines. To illustrate, consider the following inference:

1. Fo(G—oH
2. ~H " Fo~G
3. F=~G 228

Does line (3) follow from lines (1) and (2) by modus tollens? No. Modus tollens
must be applied to entire lines in a proof. So, in order to have an instance of
modus tollens, we need two things:

B A conditional statement that is an entire line in a proof

B Another line that is the negation of the consequent of that conditional

In the preceding example, the first is satisfied but the second is not. Line (1} is a
conditional that represents an entire line in the proof. But the negarion of its
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consequent is ~(G — H), not ~H. So, line (3) does not follow from lines (1)
and {2) by modus tollens.

Notice that we construct our proofs by means of one application of one rule
of inference per line, as indicated in the annotation listed to the right. We
do this to ensure that each step in every proof is explicit and clearly justi-
fied by a rule in our system of logic. Which of the following proofs is properly
constructed?

1.A—=~B 1. A= ~B

2. AC ~B 2. AC so~B

3. ~B 2, MP 3 A 2, Simp
4

. ~B 1,"@, MP

The proof on the right is correct; the proof on the left skips a required applica-
tion of simplification and misapplies modus ponens. To apply modus ponens, we
need (a) a conditional that is an entire line in the proof and (b) another line
that is precisely the antecedent of that conditional. Clause {a).is satisfied in line
(1) of the above-proofs, but clause (b) is notsatisfied in the proof on-the left
because A never appears by itself on any line.

The following hints or rules of thumb may help you as you construct
proofs:

Rule of Thumb 1: It usually helps to work backward. Se, start by looking at the con-
clusion, and then try fo find the conclusion [or elements thereof] in the premises.

For example:

1. A=[B—I(CvD
2. B=A
3. ~D - C

The conclusion here is C. Does it appear anywhere in the premises? Yes, it is
embedded in the consequent of premise (1). And if we could obtain C v D from
premise (1), we could combine it with ~D-—that is, premise (3)—to get C, by
disjunctive syllogism. But how can we obtain C v D? Consider a second rule of

thumb:

Rule of Thumb 2: Apply the inference nules fo break down the premises.

We could get A from line (2) by simplification and use it together with line
(1) to obtain B — (C v D), by modus ponens. Then we could get B from line (2)
(by simplification) and apply modiis ponens again, to obtain C v D. The whole
proof would then look like this:
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LASB-oI{CvD]

2. BeA

3. ~D 5 C

4, A 2, Simp
5 B-{CvD 1,4, MP
6. B 2, Simp
7. CvD 5,6, MP
8. C 3,7,05

Let’s consider another example:

1. EVF i
2.E=G s
3. F—H

4. GV H) =) ~JvK

Using rule of thumb 1, we start by examining the conclusion. We ook to see if
the conclusion (or parts thereof) appear in the premises, noting that J is the con-
sequent of premise {4). Now, is there any way to break premise (4) down, as rule
of thumb 2 suggests? Yes, we can use the rule of constructive dilemma to obtain
G v H from premises (1), (2), and (3), and then use modus ponens to get.f. But
where do we go from there? In particular, how can we obtain K when it appears
nowhere in the premises! At this point, it will be helpful to bear in mind an
additional rule of thumb:

Rule of Thumb 3: If the conclusion contains a statement letter that does not appear
in the premises, use the rule of addition.

The whole proof looks like this:

1. EvF

2.E-5G6

3. F—H

4. (GvHl =] ~ivK
5. GvH 1,2, 3 CD
6. ) 4,5, MP
7. lvK 6, Add

These rules of thumb are helpful in many cases, but a certain amount of ingenu-
ity is required when doing proofs. Furthermore, to gain facility in constructing
proofs, one must practice. Hence, the following exercises are provided.
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T ods porons U
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6. Simp!iﬁ_mﬁpﬁ(é'im-b)_;"-:;'h-t;&q-

7. Cdr.liunéﬁon. [Con|) ..

8. Ac{dmon [Add], |n twoforms

(1 Exercise 8.7 , »

Part A: Annotating  For each of the following proofs, indicate from which steps
each inference is drawn and by which rule the inference is made. (See the Answer
Key for an illustration.)

F—=G 3.
.G—=H ~F-H

F—=H

=S = ~P

~S L Kv~P

. ~P

4 Kv~P

E=S(T—=9)

. ~(T —=8)
.~RvE .. ~R
~E

.~R

™
W b= L
oA L
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* 4, 1.Hv ~C 8 1.FvS
2.H— ~B 2.G
3.~-C—-D 3.[Gs(FvS)]—~T
4. (~BvD)—= ({K-]) ] 4 ~B—-T .. ~~B
5.~BvD 5.G=(FvS)
6.Ke] 6. ~T
7. ] 7.~~B

5. 1.D 9. L.LF—>B.
3.(De~H)—= (EvH) ~E 3.(~D:G) = (B—9)
4.D-~H 4.G
5.EvH 5.8 o Ge~F
6.E 6.~D-G
6. 1.~A— ~B 7.8 8

2 B C v e A C 8.F—S5
3, ~~B 9. ~F
4 ~~A 10. G ~F
5.C #10. 1. W= (X v ~Y)
6. ~~A-C 2.~~Y W . Xv~Z

# 7. 1.~(P-Q)vR 3. W
2.(~E+~R) > (A+B) , 4. X v ~Y
3.E—(P-Q) 5 ~~Y
4, ~R -~ Bv(F-0) 6. X
5. ~(PQ) 1. X v ~7Z
6. ~E
7. ~E«~R
8.A-B
9.B
10.Bv (E+G)

k4

Part B: Correct or Incorreci?  Some of the following inferences are correct appli-
cations of the eight rules introduced in this section, and some are not. If an inference
is a correct application of a rule, name the rule. If an inference is not a correct appli-
cation of a rule, explain why it is not. (The question is whether the conclusion in
each case can be reached in a single step from the premise(s) by an application of one
of the rules.)

= 1, K-—=L 3. M—=N
~L ~M
~K s ~N
2 G-—-F * 4 ~Bv ~Y
E—=G ~B— ~X
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5. (E-F)vC 4. P:Q
~(E+F) " (R=8)v(P-Q)
~ G 15. R—~S
6. (N+P)=(OvS) ~~§
OvSs . ~R
S NP * 16. ~Cv ~D
® 7. ~E v ~F X—=C
~~F Y—=D
. ~F X ~Y
8. A-—~~B 7. ~Gv~p
~B G
~A - ~P ":\
9 (P—=Q)VvR 18. A—=(B=0C)
P B '
L QVvR L A-=C
+10. (R*8)=T %19, (~BvD)>E
S S8=T _ ~~B
11.  (KvL) =M “D—E
~M 20. ~T —= ~N
so~(KvL) ~~N
12.  (Hv ~S)— ~W co~T
Hv ~8
W
*13. T—~U
U
o ~T

Part €: Proofs Construct proofs to show the following symbolic arguments
valid. Commas mark the breaks between premises. (See the Answer Key for an
illustration.) '

* 1. H—>~B D—=B H ... ~D |

.F-{(G—-H), ~F—=], ~(G=H) -]

(FvE)—~D, SvD E 8

~A—-FE A->D ~D, F5S -~ 8vX

(A<E)—>E E F={(D-~C), A .. ~C

~Fv~G, ~F=7, ~G—->~R, Zv~R)=U-=P), ~P .. ~U
~(SvR), B>(8VvR), BvP ~QvB .. P-~Q

Co>(T->L), ~L, ~E—=C, Lv~E .. ~T

~~A, B> ~A . ~B o

R T AT
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*10.
11.
12,

*13.
14.
15,

*16.
i7.
18,

*19.
20,

Statement Logic: Proofs

(B+A)—>C, ~D—(B+A), ~C .. ~~D

(~B+~C) = (D—=C), ~B, C»B = ~D

(D-H) =R, S=»(D-H) ..S—R

(ToC)—»~ES—=C T->S Fv~P .. ~P

(Av ~B)— (Fv (R+G)), A, FoL, (R-G)>T, LvT) =S =8
PvQ, (Q+~R)—=S, R—B ~P . S

(EVE)—~G, ~H, HvK, (KvL)—»E ~ ~G
(MvN) = ~S, T = (MvN), ~S = ~(MvN) . T ~(MvN)
(Ev~B) = (~SvT), E, ~8 L, T—»~C, (Lv~C)—A ~ A
B, ~C = ~B, (~~CvT)>P ~P p

Bv ~C, B—E, ~~C - ~BVE "

Pars D: More Proofs Construct proofs to show that the following arguments
are valid. Commas mark the breaks between premises.

%

[y

*
bt i g
LS I N ]

18.
*19.

REBE e A S i

.P—=Q, R>~S PVvR, (Qv~8) = (~Tv~W), ~~T . ~W

(AvG)—K X—(B—=F), A-B .. F

~M, (~M+*~N) = (Q—=P), ~N, PR ~ Q=R

~RVS), ~(T+V) = R VS), ~~(T+V) > W = Wv~R
~Woe~nZ, (~WeX) oY, ~ZvX ~ Y '

F—sA, ~]Jo~K, H5(G-F), ~K=>(~]=H) ~.G-A
~F>}, ~Fv~G, ~G— ~H, (Jv~H)—> ~K, ~L—-K s ~~L
YW ZoW)—»(V~T),Z-Y, Q—-T .. ~Q
(~N+M)>T, ~O->M, ~O+~N . TvS

. ~As~C, ~C =D, (D+~A) - (E—~H), E+(~F=H) . ~~F

.R>D, B—>R, (B—»D)—>(EVEF, ~E ~F

. ~F>5~G, P>~Q, ~FvPE (~Gv~Q)—>(L-M) ~L

* 13,
14.
15.

#16.
17.

(Z-A)v~Y, (Z-Ay—>U, Wv~U, ~W = ~Y

(D*E)vE F=C, (D<E) > ~B, (~BvC) > (A—=P), ~P - ~A
O=N, ~M, S5>R, PO, R—=P (§>N)->MvL) ~.~PvL ~
(~MvL)—=(~A—-B), ~S—>T, R=>~5, ~M:], Rv~A ~TvB

F—o~C, ~~G+0, (~F+~~G)>[(~H->E)-(C-F)], Cv~H
. E

~N+~M, ~P>N, ~N—Z, (Z+~~P) 5K . Ke~M
AvD, ~D, (CvA)—~E .~ ~E
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20. {C—>Q)e(~L—>~R), (S5 C)+(~N - ~L), ~Q-],
~Q—={(Sv~N) .. ~R

21, ~(ZvY) = ~W, ~U-— ~(ZvY), (~U=—~W) > (T—89),
S=RVP), [T->RvPI=>{(~RvK)s~K] - ~R

*22. ~A, [~Av(B.C)] - (D— ~E), ~E—=~FE (D> ~F) -G
S A{Ge~A)v ~H

23. (SvU)+~U, S [T-(FvQ)], [Tv(J*P)] = (~B+E) . S-~B
24. ~ X5 (~Y=~Z}, Xv(W-=U), ~YVvW, ~XeT, (=ZvU)— ~8
(RV ~S)°T ‘ 3 :
*25. DvC)—>(FvH), (H<G)—> (FvE), (DvB) = (~F—>G),
(FvD)e(~F+«A) ~ E

.‘}

Part E: English Arguments Symbolize the following arguments using the
schemes of abbreviation provided. Then construct proofs to show that the argu-
ments are valid.

# 1. No one can know anything, for every piece of reasoning must start some-
where. And if every piece of reasoning must start somewhere, then every
piece of reasoning begins with an unsupported premise. Now, if every piece
of reasoning begins with an unsupported premise, then all human thinking
is based on mere assumption. And if all human thinking is based on mere
assumption, no one can know anything. (S: Every piece of reasoning must
start somewhere; U: Every piece of reasoning begins with an unsupported
premise; A: All human thinking is based on mere assumption; K: No one can
know anything)

2. Theists say that God created the world. They say that the world must have a
cause. But why? The world must have a cause only if everything must have a
cause. But if everything must have a cause, then God has a cause. However,
God isn't God if God has a cause. And if God isn’t God, God doesn'’t exist.
So, if the world must have a cause, there is no God. (W: The world mist
have a cause; E: Everything must have a cause; H: God has a cause; G: God
is God; X: God exists) '

3. Either we should stop going places, or we should develop hydrogen-powered
cars, ot we should go on. driving gasoline-powered cars. We should go on
driving gasoline-powered cars only if we should destroy the ozone layer. We
should not stop going places and we should not destroy the ozone layer.
Therefore, we should develop hydrogen-powered cars. (P: We should stop
going places; H: We should develop hydrogen-powered cars; G: We should
go on driving gasoline-powered cars; O: We should destroy the ozone layer)

* 4. Dinosaurs are extinct. And given that dinosaurs are extinct, they suffered
some catastrophe if they died suddenly. The dinosaurs died suddenly, assum-
ing that they froze due to a sudden drop in temperature or were attacked by
a lethal virus. The dinosaurs froze due to a sudden drop in temperature
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provided that the sun’s rays were blocked. The earth’s atmosphere was filled
with dust due to the impact of a comet, and the sun's rays were blocked.
Therefore, the dinosaurs suffered some catastrophe. (E: Dinosaurs are
extinct; C: The dinosaurs suffered some catastrophe; D: The dinosaurs died
suddenly; F: The dinosaurs froze due to a sudden drop in temperature; V: The
dinosaurs were attacked by a lethal virus; S: The sun’s rays were blocked;

A: The earth’s atmosphere was filled with dust due to the impact of a comet)

In spite of the fact that advocates of suicide and euthanasia often claim that
every right—including the right to life—can be waived, I think it’s absurd to
suggest that every right can be waived. (To waive a right is to agree, for good
moral reasons, not to exercise it.) For if every right can be waived, then if
announce that I am waiving my right to liberty, you are morally permitted to
enslave me. But obviously, it is not true that if I announce that [ am waiving
my right to liberty, then you are morally permitted to enslave me. (E: Every
right can be waived; A: I announce that I am waiving my right to liberty;

P: You are morally permitted to enslave me)

If morality is not subjective; then either morality is relative to cultures, or
God is the source of all moral values. If morality is subjective, then if |
approve of racism, racism is right. Plainly, it’s false that if I approve ofracism,
racism is right. Furthermore, if morality is relative to cultures, then the can-
nibalism in New Guinea is right, and the caste system in India is right. The

statement “The cannibalism in New Guinea is right, and the caste system in

India is right” is false. God exists if God is the source of all moral values.
Accordingly, God exists. (S: Morality is subjective; M: Morality is relative to
cultures; V: God is the source of all moral values; A: I approve of racism;

R: Racism is right; C: The cannibalism in New Guinea is right; I: The caste
system in India is right; G: God exists)

Al has precognition. And assuming that Al has precognition, Al experiences
events prior to their occurrence. But if Al experiences events prior to their

occurrence, then either events exist prior to their occutrence, or Al predicts

the future on the basis of what he knows about the past and present. It is
simply nonsense to say that events exist prior to their occurrence. We may
infer that Al predicts the future on the basis of what he knows about the past
and present. (P: Al has precognition; A: Al experiences events prior to their
occurrence; B: Events exist prior to their occurrence; F: Al predicts the
future on the basis of what he knows about the past and present)

God’s existence is either necessary or impossible, if it is not contingent.
God’s existence is a matter of metaphysical luck if it is contingent. God's
existence is emphatically not a matter of metaphysical luck. God’s existence
is not impossible if the concept of an omnipotent and perfectly good being is
coherent. The concept of an omnipotent and perfectly good being is coher-
ent. Therefore, God’s existence is necessary. {N: God’s existence is necessary;
[: God's existence is impossible; C: God’s existence is contingent; M: God’s

L.
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existence is a matter of metaphysical luck; T: The concept of an omnipotent
and perfectly good being is coherent)

9. Either the “eye for an eye” principle is interpreted literally, or it is interpreted
figuratively. If it is interpreted literally, then the state must do to criminals
what they have done to their victims. If the state must do to criminals what
they have done to their victims, then the state must torture torturers. On the
other hand, if the “eye for an eye” principle is interpreted figuratively, the
state need only mete out punishments that are proportional to the crime. If
the state need only mete out punishments that are proportional to the crime,
then the state is free to give murderers life imprisonment rather than the
death penalty. Now, the state must not torture torturers if such acts are
immoral. And it is indeed immoral to torture torturers. Hence, the state is
free to give murderers life imprisonment rather than the death penalty.

(L: The “eye for an eye” principle is interpreted literally; F: The “eye for an
eye” principle is interpreted figuratively; C: The state must do to criminals
what they have done to their victims; T: The state must torture torturers;
P: The state need only mete out punishments that are proportional to the
crite; S: The state is free to give murderers life imprisonment rather than
the death penalty; [: It is immoral to torture torturess’

10. Either Mary is in much pain or she isn’t in much pain. And Mary lacks a
capacity to make a rational decision about ending her life if she is in a lot of
pain. On the other hand, given that Mary isn’t in much pain, she is in no
position to know what she will want when she is in much pain. Furthermore,
Mary has no right to end her life if either she lacks a capacity to make a
rational decision about ending her life or she is in no position to know what
she will want when she is in much pain. But Mary has no right to “die with
dignity” if she has no right to end her life. Thetefore, Mary has no right to
“die with dignity.” (M: Mary is in much pain; R: Mary lacks a capacity to
male a rational decision about ending her life; K: Mary is in no position to
know what she will want when she is in much pain; E: Mary has no right to
end her life; D Mary has no right to “die with dignity”) .

8.2 Five Equivalence Rules

In developing a system of natural deduction, the logician is pulled in two direc-
tions. On the one hand, it is possible to develop a system with a small number of
inference rules. But in systems with only a few rules, the proofs are often quite
long and require much ingenuity. Moreover, the proof strategies tend to depart -
substantially from those employed in ordinary reasoning. On the other hand, it
is possible to develop a system with a very large number of rules. Such systems
allow for relatively short proofs, but most people ind it difficult to remember a
large number of rules. The present system of statement logic is a compromise
that includes 20 rules altogether—8 implicational rules, 10 equivalence rules
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(introduced in this section and the next), conditional proof, and reductio ad
absurdum.

Recall that two statements are logically equivalent if they validly imply each
other. So, it is a valid inference to move from one statement to another that is
logically equivalent to it. We can also say that two statements are logically
equivalent if they agree in truth value regardless of the truth values assigned to
their atomic components.” For example, P v Q is logically equivalent to Q v P,
and the inference from P v Q to Q v P is valid. Now, an equivalence rule, as the
name suggests, is based on a logical equivalence. And our use of the equivalence
rules depends on this further principle: Within tmth—funcuonal ogic, if we replace
part of a compound statement with anything logically equivalent to that part, the
resulting statement will have the same truth value as the oviginal compound. For
example, if we start with (P v Q) = R and replace (P v Q) with (Q v P), we get
a statement that has the same truth value as the first, namely, {(Q v P) — R. And
the inference from (P v Q) — R to (Q v P) — R is clearly valid because the two
statements must have the same truth value.

Five equivalence rules are introduced in this section and five more in the
next section. Using the four-dot symbol (: :) to indicate logical equivalence, we

can state our first equivalence rule, the rule of deuble-negation, as follows:
4

Rule 9: Doutle-negation {DN): p: @ ~~p

The four-dot symbol tells us that we may move validly from ~~p to p, as well as
from p to ~~p. All our equivalence rules are two-directional in this sense,
unlike the implicational rules introduced in the previous section. For example,
the rule of addition allows one to move from p to p V-, but it does not allow one
to move from p v g to p. Indeed, the latter move is invalid; here is a counterex-
ample: “Either the number 3 is even, or the number 2 is even. So, the number 3
is even,”

The rule of double-negation formalizes the intuition that any statement
implies, and is implied by, the negation of its negation. Here are two English
examples:

11. tis not true that Booth did not kill Lincoln. So, Booth killed Lincoln.
12. Booth killed tincoln. So, it is not true that Booth did not kill Linceln.

The usefulness of this rule is itlustrated in constructing a proof for the following
short argument:

13. If humans do not have free will, then they are not responsible for their actions.
But obviousty, humans are responsible for their actions. Thus, humans have free
will. {F: Humans have free will; R: Humans are responsible for their actions)

Using the scheme of abbreviation prov1ded argument (13) translates into sym-
bols as follows: o
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1. ~F - ~R
Z2. R s F

The proof must include two applications of the double-negation rule:

3. ~~R 2, DN
4. ~~F 1, 3, MT
5. F 4, DN

Note that we cannot obtain F from the premises in one step By applying MT.
MT tells us that if we have a conditional in one line of a proof and the negation of
the conditional’s consequent in another line of the proof, then we can infer the
negation of the antecedent. But line (2) of the proof does not give us the nega-
tion of the consequent of line (1), The negation of ~R is‘,:~~R, and hence we
must use the double-negation rule prior to applying MT.

As mentioned in the previous section, there is an important difference
between implicational and equivalence rules as regards the construction of
proofs. We.can apply equivalence rules to parts of lines in a proof and to entire lines.
We can do this because we never change the truth value-of a statement by
replacing some part of it with a logically equivalent expression. By contrast, we
can apply implicational rules only to entire lines in a proof. The need for this restric-
tion is illustrated by the following fallacious argument:

14. If Hasry Truman was president in 1950, and Dwight Eisenhower was president
in 1950, then America had two presidents in 1950. Therafore, if Truman was
president in 1950, then America had two presidenis in 1950, (T: Truman was
president in 1950; E: Eisenhower was president in 1950; A: America had
two presidents in 1950)

Without our restriction on implicational inference tules, we could construct the
following proof:

1.TF)—=A s T—=A
2.T—=A 1, incorrect use of Simp [not permitted)]

Plainly, we do not want to allow this type of move. {An abbreviated truth table
quickly reveals that the argument is invalid.) The proper use of both implica-
tional and equivalence rules is illustrated in the following proof:

1.[A=Bl = A= ~~()
2. A

3. A=D

4 DB s C

At this point, if we tried to apply MP to lines (1) and (2) to derive B or ~~C,
we would be misapplying MP. An imiplicational rule such as MP cannot be
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applied to a part of line (1); it must be applied to the whole line. So, we would
need A — B to get A —» ~~C from line (1) by MP. On the other hand,
since double-negation is an equivalence rule, we can, if we wish, apply double-
negation to a part of a line. Thus, we can complete our proof as follows:

5 A-=B=A-=Cl 1, DN

6 A-—B 3,4, 18
7. A-=C 5,6, MP
8. C 2,7, MP

y .

The fact that equivalence rules can be applied to parts of lines makes them very
flexible tools to work with. But error will result if one fails to keep the distinc-
tion between implicational and equivalence rules firmly in mind. To repeat: The
eight rules introduced in the previous section are all implicational rules (modus
ponens, modus tollens, hypothetical syllogism, disjunctive syllogism, constructive
dilemma, simplification, conjunction, and addition). The 10 rules introduced in
this section and the next are all equivalence rules. For easy reference, a table of
inference rules is provided on the inside front cover of this book.

Our second equivalence rule is commutation, which applies to both dis-
junctions and conjunctions:

Rule 10: Commutation (Com): (pv g) @ =g v p)
(pogl::lgepl

Here are two English examples of commutation:

15. Either Sarch loves psychology, or Harlan hates history. So, either Harlan hates
history, or Sarch loves psychology.

16. Frege is a logician, and Russell is a logician. So, Russell is a logician, and
Frege is o logician.

The utility of the rule of commutation is revealed in constructing a proof for the
following argument:

17. If pointless suffering accurs, then God is not both benevolent and cmnipotent. But
God is both omnipotent and benevolent. So, pointless suffering doesn’t occur,
(P: Poinfless suffering occurs; B: God is benevolent; O: God is omnipotent)

1.P= ~(B-0)

2. Qa8 oo ~=P
3.B-0 2, Com
4. ~~{B e O} 3, DN
5 ~P 4,1, MT

To underscore the difference between implicational and equivalence rules, it
may be helpful to note that the following alternative proof is also correct:
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3. P> ~(C-B) 1, Com
4 ~~[O«B| 2, DN
5 ~F 3,4, MT

Here, the rule of commutation is applied to part of line (1) to obtain line (3).

The rule of association is so obvious that you may not have thought of it as
involving an inference. It comes in two forms, one governing disjunctions and
one governing conjunctions:

Rule 11: Association [As): {pvigvrl)::{lpvg vy
pelger:{lpegler

In English, this sort of inference would normally be signﬁied by a shift in punc-
tuation. Here is an example of the first form of associationy

18. Either the alleged eyewilnesses of UFO landings are telling the truth, or they
are lying or they've been duped. So, either the alleged eyewitnesses of UFO
landings are telling the uth or they are lying, or they've been duped.

In our symbolic language, the parentheses play the role that the commas play in
the English example. The practical value of the rule of association is illustrated
in constructing a proof for the following short argument:

19. Either cigarette manufacturers are greedy or they are ignorant-of cancer
research, or they dislike young people. But it is not true that either cigarette
manufacturers are ignorant of cancer research or they dislike young people.
Therefore, cigarette manufacturers are greedy. (C: Cigarette manufacturers
are greedy; R: Cigarette manufacturers are ignorant of cancer research;

D: Cigarette manufaciurers dislike young people}

1.[CvRvD

2. ~R v D) = C

3. Cv[RvD 1, As ) .
4. C 2,3,DS

Our next rule was first made explicit by the English logician Augustus De
Morgan (1806-1871) and so is named after him. It comes in two forms. De
Morgan’s laws delineate the logical relations of negated conjunctions and ne-
gated disjunctions.

Rule 12: De Morgan's laws {DeM): ~[peoq] : : [~p v ~g]
~lpvaqli:l=p~q

Here is an English example of an inference endorsed by the first of De Morgan’s
laws:

20. Spot is not both a dog and acat. So, either Spot is not a dog or Spet is not a
cat.
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The first law also tells us that we may reverse this reasoning and infer the premise
of argument (20) from its conclusion. (This should make sense, as the premise
and conclusion are logically equivalent.) Here is an English example of the sec-
ond law:

21. It's not true that either hydrogen or oxygen is a metal. So, hydrogen is not a
metal and oxygen is not a metal.

The second law also tells us that we may reverse this reasoning and infer the
v . K

premise from the conclusion. As the following example illustrates, De Morgan's

laws are quite useful in constructing proofs.

22. Either people are equal and deserve equal pay forgqual work, or else people
are not equal and do not deserve equal pay for equal work. People are not
equal. So, people do not deserve equal pay for equal work. {E: People are
equal; D: People deserve equal pay for equal work)

1. (E<D) v {~E<~D)

2. ~E s ~D

3. ~Ev ~D 2, Add

4 ~(E<Dj 3, DeM
5. ~Ee~D 1,4,DS
6. ~D 5, Simp

The strategy required in this proof is a bit indirect. The basic insight is that the
second premise, ~E, is clearly incompatible with the left disjunct of the first
premise, E » D. This means that an application of disjunctive syllogism is in the
offing. But we have to use addition and one of De Morgan’s laws before we can
apply disjunctive syllogism.

Our next rule of inference relies on the logical equivalence between a con-
ditional and its contrapositive. To form the contrapositive of a conditional,
switch the antecedent and consequent and negate both. To illustrate, the con-
trapositive of “If Bob is an uncle, then Bob is male” is “If Bob is not male, then
Bob is not an uncle.” Let us call the inference rule itself contraposition.

Rule 13: Contraposition (Contl: (p — ¢q) @ @ {~g — ~p)
The utility of this rule becomes apparent in evaluating the following argument:

23. Hitis wrong to use drugs only if they impair the user’s mental functions, then it
is not wrong to use caffeine. And if drugs do not impair the user’s menal
functions, then it is not wrong fo use diugs. Hence, it is not wrong to use
caffeine. [W: It is wrong to use drugs; D: Drugs impair the user’s mental
functions; C: It is wrong to use caffeine]

I.W—=Dl-~C
2. ~D—>~W oo~C
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3. W=D 2, Cont
4. ~C 1, 3, MP

To emphasize the point that equivalence rules can be applied to part of a
line, let us note that the proof could also be completed as follows:

3. ~D = ~W) - ~C 1, Cont
4. ~C 2,3, MP

Here, contraposition is applied to part of line (1) to obtain line(3).

The five rules introduced in this section may seem obvious or even
trivial, but some logicians have rejected one or more of them. This results
from skepticism about the law of the excluded middle, which says that for
any given statement, either it or its negation is true. Usirlg statement vari-
ables, we can state the law of the excluded middle as follows: p v ~p. One
group of logicians who reject the law of the excluded middle is the intu-
itionists. The intuitionists hold that-the truth of a statement consists in
there being a proof of it. Thus, to prove-that any statement of the form p v g
is true, we must either prove that p is true or prove that g is true. Now, con-
sider Goldbach’s conjecture, which states that every even number greater
than 2 is equal to the sum of two primes. No one has proved that this con-
jecture is true, and no one has proved that it is not true. Let us symbolize
Goldbach’s conjecture with the letter “G”. According to the intuitionists,
then, the statement G v ~G is not true because neither disjunct has been
proved, and so the law of the excluded middle is not true.’

However, given the rules introduced in this section, we cannot deny
the law of the excluded middle unless we are prepared to deny the law of
noncontradiction, which states that contradictions are never true. Using
statement variables, the law of noncontradiction can be expressed as fol-
lows: ~(p « ~p). And all logicians endorse the law of noncontradwtton
Now, consider the following proof:

1. ~{Ge=~Gj n Gv~G
2. ~Gv~~G 1, DeM

3. ~GvG 2, DN

4. Gv~G 3, Com

The premise says that Goldbach’s conjecture is not both true and false (or
that Goldbach’s conjecture and its negation are not both true). And the
conclusion says that Goldbach’s conjecture is either true or false (or that
either Goldbach’s conjecture or its negation is true). It appears, then, that
if we wish to reject the law of the excluded middle, we must also reject at
least one of the following: De Morgan’s laws, double-negation, commuta-
tion, or the law of noncontradiction. But each of these is very hard to
deny.

3i9
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As you complete the exercises that follow, keep in mind that the three
rules of thumb provided in the previous section still apply: Start with the con-
clusion and work backward; break premises down into simpler components
using MP, MT, Simp, DS, and so on; and if a “new” statement letter appears in
the conclusion, use addition. To these three rules of thumb, we now add the
following:

Rule of Thumb 4: It is often useful to consider logically equivalent forms of the
conclusion.

For example, suppose the conclusion is ~(A « B). Then it may help to notice
that the conclusion is logically equivalent to ~A v ~B, according to De Mot-
gan’s laws. Or if the conclusion is ~D — ~C, it may be helpful to note that the
conclusion is equivalent to C — D, by contraposition.

Rule of Thumb 5: Both conjunciion and addition can lead to useful cxpE)Iiccﬁions of
De Morgan’s laws.

Consider the following examples:

1. ~E 1. ~G :
2. ~F | 2. ~Gv ~H 1, Add
3. ~Eo~F 1,2, Coni 3. ~{G < H] 2, DeM
A ~EVH 3, DeM

As before, rules of thumb are to be taken as helpful hints. They do not automat-
ically provide a solution in every case. A summary of rules of thumb for con-
structing proofs appears in section 8.5 on page 349.
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1 Exercise 8.2

Part A: Annofating  Annotate the following short proofs. (In each case, the ar-
gument has only one premise.)

# 1. I.~~A—->B . A—B
2.A—>B

2.1.~-C—>~D . D=C
2.D—-C

.~{Es~D} ~.Dv~E

~Ev~~D

""EVD Ay
.Dv~E. k

.~(EvD) .. ~D
. ~Ee~D
.~D

1
Z
3
4
1
2
3
5. 1.~A[(AvB)v(C] -~ BvC
JA
3
4
5
1
2
3

L ~A
(AvBYvC(C

* 7. LHP>Q) >R« (~Q— ~P) ... ~~R

2. ~Q—~P

3P—=Q

4. (P-Q) >R
R ' ’
~~R

A= (ST) v ~~Ule(TS) - U
T-S

ST

~AS e T) v ~~U

L=~(SeT)

~~U

U

AW (~X Y ~Y) Y v~ (W e X)
A=Wy ~X) v ~Y
W X) v ~Y
=Y v~ (W e X)

BN e 1OV W = Oy
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*10.

11.

12,

*13.

14.

15.

1
2
3
4.
5
6
3

{
yA
4
5
6
1
Z
3
4
1
2.
3
1
2
3
4
5
1
2
3
4
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.~Q - (~M — ~N)
L ~(N—=M)
~(~M — ~N)

L ~=~0

PyW
.~P
W

L ~T oo ~(Te~~8)
~Twv~S
.~(T+8)

. ~(Te~~S)

~A o ~{(B-C)-A]
~(B+C) v ~A-
. ~[(B+C)- Al

AS=>G)«(G=>T) oo ~T—~§
S—=G

.G->T

ST

. ~T —~8§

. ~R—=~8§ - ~Pv{(S—=~~R)
.S—=R

S — ~~R

.~Pv (8§ — ~~R)

J~0 = (=M ~N)]» ~(N = M) ..

1h
-

Part B: Correct or Incorrect?  Some of the following inferences are correct appli-
cations of our rules, and some are not. If an inference is a correct applicatiotrof our
rules, name the rule. If an inference is not a correct application of our rules, explain
why it is not. (The question is whether the conclusion in each case can be reached
in a single step from the premise(s) by an application of one of our rules.)

* 1.

* 4.

~(~EvB) 5,
co~~Ee~B

~B— ~C 6.
L C—oB

~(FvG) * 7.
so~Fv~G

~Wv ~Z 8.
s~ (WeZ) E

A+~B

SoBeA

~D— ~E

v ~~B = ~~D

~-SvT

no~=(Se~T)

~] v ~~K

f~(>~K)




R

[
e

9. P->-~0Q 15.
LQ—~P
*10. O-R *16.
s ~R—=~0
11. Bv(CvA)]<D 17.
S CvBYVA]« D
12. ~(D+C)—=E 18.
S (~Dv~C)—>E
#13, ~(Le~M) #19,
oo~ {~M-L)
14. ~(U e ~7) 20.
s~Uv ~~Z
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{(~~Nv~M) e (LK)
so~{~N-M)e (LK)

N[(O o ~P)o W

S ~O e (~P e W)

~Rv~Q)

R e~ Q)

~~S e T

ST

~~(Uv W) =

b (U ~W)

~(X 3Y)

R ";:Y

]
]
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Part €: Proofs Construct proofs for each of the following symbolic arguments.
Comumas are used to mark the breaks between premises. (Each proof can be com-

pleted in fewer than 10 steps, including premises. )
* 1. ~(C+D), ~C—S, ~D—>T . SvT
(W—oU)e ~X o ~U—>~W
EF—>~G, G o ~F

~(~AvB) A

(~P—=Q)~Q P

~(NvM), ~L=>MvN) ~L
(AvB)v(C, ~A ~CvDB
(Weo~X)v(YeZ), (~X- W)U, (Y-2)
~(SvR), PR . ~P

. F>{(G-*H), (H-G)—] ~.F—]

. Kv(LvS), ~(KvL) .. S

. ~B ~(PvQ)—>~R, ~Q .. ~R

%

-

*
e i
N = D

T ~UvT

*13, ~S—>(T-U), (~S=X)=~Z, (U:T)>X ... ~Z

14. ~(~B—=A), C>(~A—-B) .. ~C
15. ~E, F>(DvVE), ~D .. ~F

*16. (KvP)vX K- ~Q, (PvX)—~L ... ~(O-L)

17.
18,
*19.
20.

(GVH)-» (JvK) & ~(JvK) = ~(Hv C)
~A = ~~R, G ~U, ~AvG - ~(~R-U)
~(L+M) > ~(NvO) - (OvN)—(M-L)
B—E, (BvO)vD, (DVC)SF .~ EvF

~
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21.
%22,
23.
24.
%25,

Part D: Longer Proofs Construct proofs to show that the following arguments

Statement Logic: Proofs

W—~U, WvX, ~T=(Z:U), X>~Z .. T
~(~P+Q), ~Q—>R, P—~S ~Rv~S

~B, A~ (B:C) .. ~A

[S—={J:-Qf-~Q ~ ~3

~B, ~(C*B)>C, ~F—»~C ~F

are valid. Commas are used to mark the breaks between premises.

* 1,

o @

11.
12.
13,
14.
15.
* 16.
17.
18,
19,

20.
21.
*22.
23.

24

*25

i
N e

~~T v ~R, ~(§v~R), (Te~8) —~Q, W—=0Q .. ~W
~(J-L), (~]Jv~L)—>~M, ~Ev(Mv ~§) .»~(S-E)

E o [~(HvK) 5 R], ~~E+(~H+~K) ~~~R,

B—>E ~FvG, (B-C)D, (DC)—>F ~E-G
Pv(QVvR), (QvP)—=~85 R—=~T, U~ (S-T) .. ~UvZ
W [(Xv W) —=Y], H— ~Y . ~H
~(Be~C), ~B—>D, C—>~E ... ~EvD

(F+G)—= H-D, J-H > KvL), (LvK)y=>M -~ (GF)->M
~YVvN, (Yo ~N)V(YsZ), (ZoY)—~~U ~Uv~V

. ~A—>~B, D-E (B=A)->(CvD), Co»F - EVF
~HeG v~ KsH«G), ~L>] o ~(K:~L}
{(XeQ)—=(Z+~T), Re(Tv~Z) - (~Xv~Q)<R
~[MvN)vQ], (P-R}y=>N, ~P>T, ~R—S . TvS
Z—(U-X), ~[(U-W}-X], W . ~Z

~(~A By ¢ ~(Cv ~D) - (~BvA)<(D~C)
~[{E-F)vG], (Hv~E)—=G . ~(FvH). :
~R -8 ~(~T->~U), ~W->T, U->~W, ~5 .. ~R
~(LvM)sN], (P—>~Q)—=>N, Q—>~P . ~M

[(A*B)v~C]—= (~X+~Y), ~(YvX)—Z, ~Cv(A-+B)
oo~

HvG, ~(~-D—>E)}, FvG)—=(~E—=D}) . ~JvH
~(~Pe~Q), Q— XVvR), P>Y -~ Xv(YVR)
Av(Bv(C), ~A~C ~[BvC)~(AvC)]-(AVE)
~F ~(F>~8) - ~P, (~SF)v~T .. ~(PvT)

O (HM), (0206 = (H—- ~M), ~G = (~H v ~M)
s~ H—~M e

L 7Y, ToX, ~Y = ~S, ~(XvY)v~Z = ~(TvS)Y
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8.3 Five More Eguivalence Rules

To this point, our system of natural deduction includes 8 implicational rules and
5 equivalence rules. With these 13 rules, we can construct proofs for many valid
arguments in statement logic. But we need 5 more equivalence rules (plus a rule
called “conditional proof”) if our system of natural deduction is to be able to
prove valid every argument that is valid according to the truth table method So,
in this section, we add 5 more equivalence rules to our system.

The rule of distribution tells us how certain combmatlons of the dot and
the vee interrelate. It comes in two forms.

Rule 14: Distribution (Dist]: (peigv )l : - {lpeg) v ip > r))
pvigerl::{lpval=lpvrl

To grasp these inferences, think ahout them truth functionally. For example,
consider the first form of distribution: Suppose (p « (g v r)) is true; then p is true
and (g v r) is true; so either (p + ¢) is true or (p « r) is true (or both). Similarly,
suppose ((peg) v (p+r)) is true. If (p » q) is true, then (p» (g v r)) must be true,
too; but if (p « r}-s true, then, again, (p * (g v r)) must be true. Notice that when
distribution is applied correctly, the main logical operator changes (either from
the dot to the vee or from the vee to the dot). Here are some English examples
of distribution:

24. "Bats are animals, and they are either mammals or birds" implies (and is implied
by| "Either bats are animals and mammals, or bats are animals and birds.”

25. "Either Bill lost the lottery, or Bill won and he is rich” implies {andis implied by)
“Either Bilt lost the lottery or he won, and either Bill lost the lottery or he is rich.”

The utility of the rule of distribution is brought out when we construct a proof of
the following argument:

26. Either Fiona is insane, or she is guilty and a liar. But if Fiona is either insane or
a liar, then she is dangerous. It follows that Fiona is dangerous. (F: Fiona is in-
sane; G: Fiona is guilty; L: Fiona is o liar; D: Fiona is dangerous)

T.EvIG-]

2. Fvl =D D

3. FvGeifvl 1, Dist
4 Fvl 3, Simp
5 D 2,4, MP

Perhaps because distribution appears a bit complex, there is some tendency
to overlook occasions for its use when constructing proofs, but it is often quite
useful, :

The rule of exportation tells us that statements of the form “If p and g,
then r” are logically equivalent to statements of the form “If p, then if ¢, then r.”
In symbols, we have the following: ‘
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Rule 15; Exportation [Ex): (pegl =) 1 [p = lg— )

Here is an English example:

27. "If Sue is infelligent and she studies hard, then she gets good grades” implies

(and is implied by} “If Sue is intelligent, then if she studies hard, she gets good
grades.”

A proof of the following argument will illustrate a typical usage of exportation,

28. If World War | was not a war in defense of the U.S.A., and only wars of

defense are just, then the American participation in World War | was not just,
World War | was not a war in defense of the U.S.A. It follows that it only wars
of defense are just, then the American participatiori:in World War | was not
just. (W World War | was a war in defense of the U.S.A.; D: Only wars of
defense are jusi; J: American participation in World "War | was just

1. {~W-D] > ~]

2. ~W Do~
3. ~W = (D -~ 1, Ex
4. D— ~J 2,3, MP

The redundancy rule is obviously valid, and as the nante suggests, it allows

us to eliminate certain types of redundancy.

Rule 16: Redundancy (Re): p: @ (pe p)

pipvp

A proof of the following argument reveals a typical use of this rule.

29. Either pain is real or it is an illusion. If pain is real, then pain is bad. And if

pain is an illusion, then pain is bad. Accordingly, pain is bad. (R: Pain is real;
- Pain is an illusion; B: Pain is bad)

£l

T.Rv

2.R—B

3.1—B - B

4 BvB 1,2,3,CD
5.8 4, Re

Note that the rule allows us to introduce redundancy as well as to eliminate it.
For example, the redundancy rule allows us to move from ~A to ~A» ~A and

fromRtoRv R,

The rule of material equivalence gives us a way of handling biconditionals.

It comes in two forms. The first form tells us that a biconditional is logically
equivalent to a conjunction of two conditionals. The second form tells us that a
biconditional is logically equivalent to a disjunction of two conjunctions. The
second form makes sense if you remember the truth table for the biconditional:
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{p ¢ q) is true if either p and ¢ are both true or p and ¢ are both false; otherwise,
(p > q) is false.

Rule 17: Material equivalence IME}: (p <> q) : @ ((p— q) * lg — pll
gl llpeglvi~pe~q)

A proof of the following argument will illustrate a typical usage of material
equivalence.

30. Withholding medlical reaiment is wrong if and only if either the patient has
valuable future life or the family insists on medical reatment. But the patient is
brain dead. And if the patient is brain dead, then he has not got a valuable
future life. Furthermore, it is not the case that the family insists on medical frear
ment. }t follows that withholding medical treatment is hot wrong. (W: With-
holding medlical freatment is wrong; L: The patient hasa valuable future life:
F: The family insists on medical treatment: B: The patient is brain dead)

1. W e (Lv F)
2.B

3-B s ~l

4. ~F W
5. ~L - 2,3, MP
6. W= (LvRAls[LvF W] 1. ME

7 W=i(lvF 6, Simp
8. ~Le~F 5, 4, Conj
O, ~(L v F 8, DeM
10, ~W 7,9, MT

The last of our equivalence rules is called material implication. It is based
on the logical equivalence between statements of the form (p — ¢) and a disjunc-
tion whose disjuncts are the consequent of the conditional and the negation of its
antecedent. This equivalence can easily be demonstrated with a truth table.

Rule 18: Material implication (MI): (p — g) : = [~p v q)

Without material implication, our proof system would lack the capacity to
prove valid every argument that is valid according to the truth table method.
But it is important to remember that ~p v g and p — g are equivalent because
of the truth-functional definition we have given the arrow. As we saw in
Chapter 7, not every English statement of the form “If p, then g" is equivalent
to “Either not p or q.” For example, “If the Eiffel Tower is in Ohio, then it is in
France” is intuitively false; but the disjunction “Either the Eiffel Tower is not
in Ohio, or the Eiffel Tower is in France” is true, since the Eiffel Tower is in
fact in France (and not in Ohio). Aceordingly, we include the rule of material
implication in our system, but with the realization that if a proof relies on this

/
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rule, it may fail to mirror our intuitive logical convictions about English
conditionals.

Our proof of the following argument makes a strategic use of both material
implication and the rule of distribution.

31. ¥ either humans do not need meat or eating meat is unhealthy, then humans
should not eat meat. Hence, if humans do not need meat, then humans should
not eat meat. (N: Humans need meat; E: Eating meat is unhealthy; S: Humans
should eat meat}

1. [~NvE = ~S o ~N-—>~§

2. ~[~NwvEwv~S 1, Ml

3. ~Sv ~[~NvE} 2, Com N
4. ~S v [~~N o ~E) 3, DeM N
5. ~S v ~~N)+{~Sv ~E) 4, Dis -
6. ~Sv ~~N 5, Simp

7. ~~Nwv ~§ 6, Com

8. ~N = ~S | 7, M

This proof is rather complex, and it suggests the following rules of thumb (to be
added to the five rules of thumb introduced previously):

Rule of Thumb 6: Material implication can lead to useful applications of distribution.

This is illustrated by lines (2) through (5) in the previous proof. But here is a
simpler case:

1.A=(8-C)
2. ~Av(B+CQ) 1M
3. [~AvBje~AvC) 2, Dis

Rule of Thumb 7: Distribution can lead to useful applications of simplificdtion.

This rule of thumb is illustrated in lines (4) through (6) in the previous proof,
but here is another example:

1.{D<EjvD-F
2. De[EVF 1, Dist
3.D 2, Simp

At least one more rule of thumb (not suggested by the previous proof) may be
helpful as you complete the exercises at the end of this section:

Rule of Thumb 8: Addition can lead to useful applications of material implication.

Here are two examples:
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1. B 1. ~F
2. ~AvB 1. Add 2. ~FvG 1, Add
3. ASB 2, M 3.FG 7 2, Ml

sl

A summary of rules of thumb for constructing proofs is provided in section 8.5
on page 349.

[n closing this section, let us reflect briefly on the value of proofs. What
good are they? First, many valid arguments are sufficiently complex to dazle
one’s logical intuitions. In such cases, our proof system comes into its own by
enabling us to show how we can get from the premises to the conclusion using
only the rules we have explicitly adopted. So, unless we have doubts about our sys-
tem of rules, a proof should settle all doubts about the validity of even very com-
plicated arguments. Second, suppose you claim that an argument is valid and
someone else claims that it isn’t. What can you do? Well, if the argument can be
shown to be valid by means of a proof, then this should settle the matter (unless
the other person rejects one or more of the rules in our system). The power of
logic consists partly in the fact that in so many cases; it can settle the question
of an argument’s validity. And once we determine that an argument is valid, the
question of its soundness turns entirely on whether its premises are true.

v4 Exercise 8.3

Part A: Annotating Annotate the following short proofs. {In each case, the ar- A
gument has only one premise. )}

*¥ 1. 1.B<—E ~E—=B
; 2.(B—=E)-(E—B)
g 3. E>B

2, 1.(B.C)v(~B+~C) ~.BxC
2B C e
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*4.

11.
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1.~(AAYv(BvB) ~A—>B
2.~(A-A)vB
3.(A-A)—>B

4 A—B
IL.H-(J—~H) . H-—~]
2.H— (~~H - ~])

3. (e =11 > -]

4. (HH) - ~]

5H—->~]

1LP-~Q (~QwvR)
Z. (P°~Q)V(P R)
3.P-(~QvR)
I.LEv(~G-H) . G—>F

2. (Ev ~G)+(FvH)
3.Fv~G

4. ~GvF

5.G—F

I.M—=~N ~N-»~M

2. ~Mv ~N

3. ~Nv~M

4. N — ~M

1.~SeoT W (~8.T)v(S:~T)
2. (~S=T)v(~~8°~T)
3.(~ST)v(S«~T)
L(BBv(CD) ~.BvD
2.Bv(C-D)

3. (BvC) +(BvD)

4.Bv
1(U—>U)v(~U—->U) . ~UvU
2.{(~UvU)v(~U-1)
3.(~UvU) v (~~Uvl)
4. (~UvU)v{Uvl)
5.(~UvU)vU

6. ~Uv(UvU)

7. ~UvU

1.~(TvT) . T—>~T

2, ~Te~T

3.~T

4, ~Twv~T

5T—=~T




