Name: Date:

Chemistry: Atoms, Mass, and the Mole

Use appropriate conversion factors and unit cancellation to solve the following problems. In order to get full credit, you must show the set-up and include units in all quantities.

9.	How many atoms is 5.2 moles of titanium (Ti)?
10.	How many moles of iron (Fe) is 5.98 x 10 ²⁴ atoms of iron?
11.	What mass of molybdenum (Mo) is 6.68 moles of molybdenum?
12.	How many moles is 586 g of rhenium (Re)?
13.	How many atoms of palladium (Pd) is 400 g of palladium?
14.	Find the mass of 4.55×10^{28} atoms of vanadium (V).
15.	Find the mass of 4.77×10^{22} atoms of scandium (Sc).
16.	Find the number of atoms in 36 g of germanium (Ge).
17.	How many atoms are in 8500 g of selenium (Se)?
18.	Find the mass of 1.43 x 10 ²⁸ atoms of polonium (Po).

Chemistry: Molar Mass and Percentage Composition

Calculate the molar masses and percentage composition of each of the following compounds. Show your work and always include units.

- 1. Ca₃P₂
- 2. Ca(OH)₂
- 3. Na₂SO₄
- 4. CaSO₄
- 5. (NH₄)₂SO₄
- 6. Zn₃(PO₄)₂
- 7. Mg(NO₃)₂
- 8. KCI

Chemistry: Percentage Composition and Empirical & Molecular Formula

Solve the following problems. Show your work, and always include units where needed.

1. A compound is found to contain 36.5% Na, 25.4% S, and 38.1% O. Find its empirical formula.
2. Find the empirical formula of a compound that is 53.7% iron and 46.3% sulfur.
3. Analysis of a sample of a compound indicates that is has 1.04 g K, 0.70 g Cr, and 0.86 g O. What is its empirical formula?
4. If 4.04 g of nitrogen combine with 11.46 g of oxygen to produce a compound with a molar mass of 108.0g, what is the molecular formula of this compound?
5. The molar mass of a compound is 92 g. Analysis of the sample indicates that it contains 0.606 g N and 1.390 g O. Find the compound's molecular formula.
6. An acid commonly used in the automotive industry is shown to be 31.6% phosphorous, 3.1% hydrogen, and 63.5% oxygen. Determine the empirical formula of this acid.

7. A solvent is found to be 50.0% oxygen, 37.5% carbon, and 12.5% hydrogen. What is the empirical formula of this solvent.
8. A particular sugar is determined to have the following composition: 40.0% carbon, 6.7% hydrogen, and 53.5% oxygen. Determine the empirical formula of this sugar molecule.
9. If the molar mass of the sugar in question #8 is 180.0 g, find the molecular formula of the sugar.
10. Ethene, a gas used extensively in preparing plastics and other polymers, has a composition of 85.7% carbon and 14.3% hydrogen. Its molar mass is 28 g. Find the molecular formula for ethane.

Limiting Reagent problems

- 1. Consider the reaction $2I05 + 5 CO \longrightarrow 5 CO2 + I2$
- a) 80.0 grams of iodine (V) oxide, I205, reacts with 28.0 grams of carbon monoxide, CO. Determine the mass of iodine I2, which could be produced.
- b) If, in the above situation, only 0.160 moles of iodine, I2, was produced, what mass of iodine was produced and what percentage yield of iodine was produced?