Accuracy vs. Precision/% Error/ Scientific Notation

Name	
Date	Section

Accuracy vs. Precision:

1. Look at each target below and decide whether the darts are accurate, precise, both, or neither:

2. Three students in each lab group measure the density of an object. The accepted value is 5.50 g/cm^3 . Decide if each group's measurements are accurate, precise, both or neither:

a) 5.21 g/cm³, 4.82 g/cm³, and 5.33 g/cm³

- b) 5.45 g/cm^3 , 5.54 g/cm^3 , and 5.50 g/cm^3
- c) 6.21 g/cm³, 6.19 g/cm³, and 6.22 g/cm³

Problems: For each problem, find the **percent error** AND state which observations are **<u>qualitative</u>** and which are **<u>quantitative</u>**.

3. Working in the laboratory, a student finds the density of a piece of silver, shiny aluminum to be 2.85 g/cm³. The accepted value for the density of aluminum is 2.70 g/cm^3 .

4. A student takes a yellow object with an accepted mass of 150.00 grams and masses it on his own balance. He records the mass as 146.3 grams.

5. Change to scientific notation

a.	867.4	b. 0.000869
c.	1000	d. 1,000,000
6.	Change to standard notation	
0	6 22 m 105	$h = 5.17 + 10^{-3}$
a.	0.32 X 10 ⁻	U. J.1 / X IU ⁻
c.	5x10 ⁰	c. 1x10 ⁻⁴