Multivariable Calculus

Assignment 17

- **47.** (a) Suppose that z = f(u) and u = g(x, y). Draw a tree diagram, and use it to construct chain rules that express $\partial z/\partial x$ and $\partial z/\partial y$ in terms of dz/du, $\partial u/\partial x$, and $\partial u/\partial y$.
 - (b) Show that

$$\frac{\partial^2 z}{\partial x^2} = \frac{dz}{du} \frac{\partial^2 u}{\partial x^2} + \frac{d^2 z}{du^2} \left(\frac{\partial u}{\partial x}\right)^2$$
$$\frac{\partial^2 z}{\partial y^2} = \frac{dz}{du} \frac{\partial^2 u}{\partial y^2} + \frac{d^2 z}{du^2} \left(\frac{\partial u}{\partial y}\right)^2$$
$$\frac{\partial^2 z}{\partial y \partial x} = \frac{dz}{du} \frac{\partial^2 u}{\partial y \partial x} + \frac{d^2 z}{du^2} \frac{\partial u}{\partial x} \frac{\partial u}{\partial y}$$

- **48.** (a) Let $z = f(x^2 y^2)$. Use the result in Exercise 47(a) to show that $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = 0$
 - (b) Let z = f(xy). Use the result in Exercise 47(a) to show that $x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial y} = 0$
 - (c) Confirm the result in part (a) in the case where $z = \sin(x^2 y^2)$.
 - (d) Confirm the result in part (b) in the case where $z = e^{xy}$.
- **49.** Let f be a differentiable function of one variable, and let z = f(x + 2y). Show that

$$2\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = 0$$

50. Let f be a differentiable function of one variable, and let $z = f(x^2 + y^2)$. Show that

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = 0$$

51. Let f be a differentiable function of one variable, and let w = f(u), where u = x + 2y + 3z. Show that

$$\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 6\frac{dw}{du}$$

52. Let f be a differentiable function of one variable, and let $w=f(\rho)$, where $\rho=(x^2+y^2+z^2)^{1/2}$. Show that

$$\left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 + \left(\frac{\partial w}{\partial z}\right)^2 = \left(\frac{dw}{d\rho}\right)^2$$

- **53.** Let z = f(x y, y x). Show that $\partial z/\partial x + \partial z/\partial y = 0$.
- **54.** Let f be a differentiable function of three variables and suppose that w = f(x y, y z, z x). Show that

$$\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0$$