

Lower limit

 Any cell must be large enough to FIT the necessary equipment to perform all the required metabolic (chemical) functions & cellular activities for life.

most bacteria

+ 1-10 μm

- Upper limit
 - Metabolic (chemical) requirements impose an upper limit to the size of cells as well.
 - eukaryotic cells
 - 10-100 µm
 - micron = micrometer = 1/1,000,000 meter
- AP Biology diameter of human hair = ~20 microns

2005-2006

What limits MAXIMUM cell size?

- In order for the necessary chemical reactions and proper molecular interactions to continue occurring at the correct <u>rates</u>, solutes must be present at <u>specific concentrations</u> inside the cell's cytoplasm (volume)
 - Too few required resources will cause the metabolism inside the cell to fail while the accumulation of too many chemical waste products can also interfere with normal cell functioning.
 - Some non-polar solutes like O₂ gas can <u>diffuse</u> into the cell and waste products like CO₂ can diffuse out of the cell, <u>crossing the</u> <u>membrane without assistance</u>.
 - Most solutes, however, are partially or fully charges and need proteins embedded inside the plasma membrane to help transport them across into or out of the cell

What limits MAXIMUM cell size?

- Past a certain maximum volume, <u>a cell no longer has enough plasma</u> <u>membrane surface area</u> in which to embed enough membrane transport proteins in order to keep transporting in and out resources and waste products at a fast enough rate <u>to maintain adequate</u> internal concentrations of these solutes.
- The distance solutes have to diffuse inside the cell becomes too large as well, solutes taking too long to reach their destination inside the cell
 - The metabolic requirements of the cell can no longer be met.

AP Biology

Organelles & Internal membranes

- Eukaryotic cell
 - internal membranes

- partition cell into compartments
 create different local environments, distinct
- from that of the cytosol
 - separate pH, different concentrations of solutes
 - allow for distinct & incompatible functions to take place
 - Iysosomal digestive enzymes must be activate in the lysosome only and not be activated outside of a lysosome or they will digest critical macromolecules elsewhere in the cell
- compartmentalize functions

- membranes for different compartments are specialized for their function
 - different structures for specific functions
 Each organelle's membrane has a unique combination of lipids & proteins

So protein action determines cell shape/activity, but what role do the internal compartments of Eukaryotes play in overall cell function?

