Practice

Form K

In each diagram, the stated triangles are congruent. Identify their common side or angle.

1. $\triangle BAE \cong \triangle ABC$

2. $\Delta SUV \cong \Delta WUT$

Separate and redraw the indicated triangles. Identify any common angles or sides.

3. $\triangle ACF$ and $\triangle AEB$

To start, redraw each triangle separately.

4. ΔFKJ and ΔHJK

Complete the drawing to separate the triangles.

5. Developing Proof Complete the two-column proof.

Given: $m\angle FEH = m\angle GFE = 90$, $\overline{EH} \cong \overline{FG}$

Prove: $\overline{HF} \cong \overline{EG}$

Statements

Reasons

1) Given

1)
$$m\angle FEH = m\angle GFE = 90, \ \overline{EH} \cong \overline{GF}$$

3)
$$\overline{EF} \cong \overline{FE}$$

5)
$$\overline{HF} \cong \overline{GE}$$

Practice (continued)

Form K

6. Given: $\triangle AFD$ and $\triangle BGE$ are equilateral triangles.

$$\angle A \cong \angle B$$
, $\overline{DE} \cong \overline{FG}$

Prove: $\overline{AD} \cong \overline{BE}$

Statements

1) $\triangle AFD$ and $\triangle BGE$ are equilateral \triangle .

3)
$$\angle B \cong \angle G \cong \angle BEG$$

4)
$$\angle A \cong \angle B$$

5)
$$\angle A \cong \angle D \cong \angle B \cong \angle G$$

6)
$$\overline{EF} \cong \overline{EF}$$

7)
$$\overline{DE} \cong \overline{FG}$$

8)
$$DE + EF = EF + FG$$

11)
$$\overline{AD} \cong \overline{BE}$$

Reasons

- 1) Given
- 2) _ ?_
- 3) _?_
- 4) Given
- 5) ?
- 6) _?_
- 7) Given
- 8) _?_
- 9) Segment Add. Post.
- 10) AAS
- 11) ?

9. The pattern at the right has been designed for a square floor tile. Both $\triangle ACF$ and $\triangle DBG$ are 30°-60°-90° right triangles. Write a paragraph proof to prove that ΔFGE is an equilateral triangle.

