# Notetaking Guide 

## Calculus

## NINTH EDITION

## Ron Larson

The Pennsylvania State University
The Behrend College

## Bruce Edwards

University of Florida

CENGAGE Learning

## © 2010 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions Further permissions questions can be emailed to permissionrequest@cengage.com

ISBN-13: 978-0-547-21308-8
ISBN-10: 0-547-21308-5
Brooks/Cole
25 Thomson Place
Boston, MA 02210
USA
Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: www.cengage.com/international

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Brooks/Cole, visit www.cengage.com/brookscole

Purchase any of our products at your local college store or at our preferred online store www.ichapters.com
Table of Contents ..... iii
Chapter P - Preparation for Calculus ..... 1
P. 1 - Graphs and Models ..... 1
P. 2 - Linear Models and Rates of Change ..... 5
P. 3 - Functions and Their Graphs ..... 9
P. 4 - Fitting Models to Data ..... 15
Chapter 1 -Limits and Their Properties ..... 17
1.1 - A Preview of Calculus ..... 17
1.2 - Finding Limits Graphically and Numerically ..... 19
1.3 - Evaluating Limits Analytically ..... 21
1.4 - Continuity and One-Sided Limits ..... 25
1.5 - Infinite Limits ..... 29
Chapter 2 - Differentiation ..... 31
2.1 - The Derivative and the Tangent Line Problem ..... 31
2.2 - Basic Differentiation and Rates of Change ..... 35
2.3 - Product and Quotient Rules and Higher-Order Derivatives ..... 39
2.4 - The Chain Rule ..... 43
2.5 - Implicit Differentiation ..... 47
2.6 - Related Rates ..... 49
Chapter 3 - Applications of Differentiation ..... 51
3.1 - Extrema on an Interval ..... 51
3.2 - Rolle's Theorem and the Mean Value Theorem ..... 53
3.3 - Increasing and Decreasing Functions and the First Derivative Test ..... 55
3.4 - Concavity and the Second Derivative Test ..... 59
3.5 - Limits at Infinity ..... 61
3.6 - A Summary of Curve Sketching ..... 65
3.7 - Optimization Problems ..... 67
3.8 - Newton's Method ..... 69
3.9 - Differentials ..... 71
Chapter 4 - Integration ..... 73
4.1 - Antiderivatives and Indefinite Integration ..... 73
4.2 - Area ..... 77
4.3 - Riemann Sums and Definite Integrals ..... 81
4.4 - The Fundamental Theorem of Calculus ..... 85
4.5 - Integration by Substitution ..... 89
4.6 - Numerical Integration ..... 93
Chapter 5 - Logarithmic, Exponential and Other Transcendental Functions ..... 95
5.1 - The Natural Logarithmic Function: Differentiation ..... 95
5.2 - The Natural Logarithmic Function: Integration ..... 97
5.3 - Inverse Functions ..... 99
5.4 - Exponential Function: Differentiation and Integration ..... 103
5.5 - Bases Other Than $e$ and Applications ..... 105
5.6 - Inverse Trigonometric Functions: Differentiation ..... 109
5.7 - Inverse Trigonometric Functions: Integration ..... 111
5.8 - Hyperbolic Functions ..... 113
Chapter 6 - Differential Equations ..... 117
6.1 - Slope Fields and Euler's Method ..... 117
6.2 - Differential Equations: Growth and Decay ..... 119
6.3 - Separation of Variables and the Logistic Equation ..... 121
6.4 - First-Order Linear Differential Equations ..... 125
Chapter 7 - Applications of Integration ..... 127
7.1 - Area of a Region Between Two Curves ..... 127
7.2 - Volume: The Disk Method ..... 129
7.3 - Volume: The Shell Method ..... 131
7.4 - Arc Length and Surfaces of Revolution ..... 133
7.5 - Work ..... 135
7.6 - Moments, Centers of Mass, and Centroids ..... 137
7.7 - Fluid Pressure and Fluid Force ..... 141
Chapter 8 - Integration Techniques, L'Hôpital's Rule, and Improper ..... 143
Integrals
8.1 - Basic Integration Rules ..... 143
8.2 - Integration by Parts ..... 145
8.3 - Trigonometric Integrals ..... 147
8.4 - Trigonometric Substitution ..... 151
8.5 - Partial Fractions ..... 153
8.6 - Integration Tables and Other Integration Techniques ..... 155
8.7 - Indeterminate Forms and L'Hôpital's Rule ..... 157
8.8 - Improper Integrals ..... 159
Chapter 9 - Infinite Series ..... 161
9.1 - Sequences ..... 161
9.2 - Series and Convergence ..... 165
9.3 - The Integral Test and $p$-Series ..... 167
9.4 - Comparison of Series ..... 169
9.5 - Alternating Series ..... 171
9.6 - The Ratio and Root Tests ..... 173
9.7 - Taylor Polynomials and Approximations ..... 175
9.8 - Power Series ..... 177
9.9 - Representation of Functions by Power Series ..... 179
9.10 - Taylor and Maclaurin Series ..... 181
Chapter 10 - Conics, Parametric Equations and Polar Coordinates ..... 185
10.1 - Conics and Calculus ..... 185
10.2 - Plane Curves and Parametric Equations ..... 191
10.3 - Parametric Equations and Calculus ..... 193
10.4 - Polar Coordinates and Polar Graphs ..... 195
10.5 - Area and Arc Length in Polar Coordinates ..... 199
10.6 - Polar Equations of Conics and Kepler's Laws ..... 201
Chapter 11 - Vectors and the Geometry of Space ..... 203
11.1 - Vectors in the Plane ..... 203
11.2 - Space Coordinates and Vectors in Space ..... 207
11.3 - The Dot Product of Two Vectors ..... 211
11.4 - The Cross Product of Two Vectors in Space ..... 215
11.5 - Lines and Planes in Space ..... 217
11.6 - Surfaces in Space ..... 219
11.7 - Cylindrical and Spherical Coordinates ..... 221
Chapter 12 - Vector-Valued Functions ..... 223
12.1 - Vector-Valued Functions ..... 223
12.2 - Differentiation and Integration of Vector-Valued Functions ..... 225
12.3 - Velocity and Acceleration ..... 227
12.4 - Tangent Vectors and Normal Vectors ..... 229
12.5 - Arc Length and Curvature ..... 231
Chapter 13 - Functions of Several Variables ..... 235
13.1 - Introduction to Functions of Several Variables ..... 235
13.2 - Limits and Continuity ..... 239
13.3 - Partial Derivatives ..... 243
13.4 - Differentials ..... 247
13.5 - Chain Rules for Functions of Several Variables ..... 249
13.6 - Directional Derivatives and Gradients ..... 251
13.7 - Tangent Planes and Normal Lines ..... 253
13.8 - Extrema of Functions of Two Variables ..... 255
13.9 - Applications of Extrema of Functions of Two Variables ..... 257
13.10 - Lagrange Multipliers ..... 259
Chapter 14 - Multiple Integration ..... 261
14.1 - Iterated Integrals and Area in the Plane ..... 261
14.2 - Double Integrals and Volume ..... 263
14.3 - Change of Variables: Polar Coordinates ..... 265
14.4 - Center of Mass and Moments of Inertia ..... 267
14.5 - Surface Area ..... 269
14.6 - Triple Integrals and Applications ..... 271
14.7 - Triple Integrals in Cylindrical and Spherical Coordinates ..... 275
14.8 - Change of Variables: Jacobians ..... 277
Chapter 15 - Vector Analysis ..... 279
15.1 - Vector Fields ..... 279
15.2 - Line Integrals ..... 283
15.3 - Conservative Vector Fields and Independence of Path ..... 285
15.4 - Green's Theorem ..... 287
15.5 - Parametric Surfaces ..... 289
15.6 - Surface Integrals ..... 291
15.7 - Divergence Theorem ..... 293
15.8 - Stokes's Theorem ..... 295
Chapter 16 - Additional Topics in Differential Equations ..... 297
16.1 - Exact First-Order Equations ..... 297
16.2 - Second-Order Homogeneous Linear Equations ..... 299
16.3 - Second-Order Nonhomogeneous Linear Equations ..... 301
16.4 - Series Solutions of Differential Equations ..... 303
$\qquad$

## Chapter P Preparation for Calculus

## Section P. 1 Graphs and Models

Objective: In this lesson you learned how to identify the characteristics

Course Number

Instructor

Date of an equation and sketch its graph.

Graph of an equation
Intercepts
I. The Graph of an Equation (Pages 2-3)

The point $(1,3)$ is a $\qquad$ of the equation
$-4 x+3 y=5$ because the equation is satisfied when 1 is substituted for $\qquad$ and 3 is substituted for $\qquad$ .

To sketch the graph of an equation using the point-plotting method, $\qquad$
$\qquad$
$\qquad$
$\qquad$

One disadvantage of the point-plotting method is $\qquad$
$\qquad$
$\qquad$

Example 1: Complete the table. Then use the resulting solution points to sketch the graph of the equation
$y=3-0.5 x$.

| $x$ | -4 | -2 | 0 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ |  |  |  |  |  |



## II. Intercepts of a Graph (Page 4)

The point $(a, 0)$ is a(n) $\qquad$ of the graph of an equation if it is a solution point of the equation. The point $(0, b)$ is a(n) $\qquad$ of the graph of an equation if it is a solution point of the equation.

To find the $x$-intercepts of a graph, $\qquad$

To find the $y$-intercepts of a graph, $\qquad$
III. Symmetry of a Graph (Pages 5-6)

Knowing the symmetry of a graph before attempting to sketch it is useful because $\qquad$

What you should learn
How to find the intercepts of a graph

## What you should learn

How to test a graph for symmetry with respect to an axis and the origin

The three types of symmetry that a graph can exhibit are

A graph is symmetric with respect to the $\boldsymbol{y}$-axis if, whenever $(x, y)$ is a point on the graph, $\qquad$ is also a point on the graph. This means that the portion of the graph to the left of the $y$-axis is $\qquad$
$\qquad$ A graph is symmetric with respect to the
$\boldsymbol{x}$-axis if, whenever $(x, y)$ is a point on the graph, $\qquad$ is also a point on the graph. This means that the portion of the graph above the $x$-axis is $\qquad$ . A graph is symmetric with respect
to the origin if, whenever $(x, y)$ is a point on the graph,
$\qquad$ is also a point on the graph. This means that the graph is $\qquad$ .

The graph of an equation in $x$ and $y$ is symmetric with respect to the $y$-axis if $\qquad$
$\qquad$ .

The graph of an equation in $x$ and $y$ is symmetric with respect to the $x$-axis if $\qquad$
$\qquad$ -

The graph of an equation in $x$ and $y$ is symmetric with respect to the origin if $\qquad$
$\qquad$ -

Example 2: Use symmetry to sketch the graph of the equation

$$
y=2 x^{2}+2 .
$$


IV. Points of Intersection (Page 6)

A point of intersection of the graphs of two equations is $\qquad$
What you should learn How to find the points of intersection of two graphs

You can find the points of intersection of two graphs by $\qquad$ .
$\qquad$

Example 3: Find the point of intersection of the graphs of $y=2 x+10$ and $y=14-3 x$.

## V. Mathematical Models (Page 7)

In developing a mathematical model to represent actual data, strive for two (often conflicting) goals: $\qquad$ .

## What you should learn

 How to interpret mathematical models for real-life data






## Homework Assignment

Page(s)
Exercises

## Section P. 2 Linear Models and Rates of Change

Objective: In this lesson you learned how to find and graph an equation of a line, including parallel and perpendicular

Course Number Instructor

Date lines, using the concept of slope.

Define each term or concept.
Slope
Parallel
Perpendicular
I. The Slope of a Line (Page 10)

The slope of the nonvertical line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $m=$ $\qquad$
To find the slope of the line through the points $(-2,5)$ and
$(4,-3)$, $\qquad$

If a line falls from left to right, it has $\qquad$ slope. If a line is horizontal, it has $\qquad$ slope. If a line is vertical, it has $\qquad$ slope. If a line rises from left to right, it has $\qquad$ slope.
II. Equations of Lines (Page 11)

The point-slope equation of a line with slope $m$, passing through the point $\left(x_{1}, y_{1}\right)$ is

What you should learn
How to find the slope of a line passing through two points

What you should learn
How to write the equation of a line with a given point and slope

Example 1: Find an equation of the line that passes through the points $(1,5)$ and $(-3,7)$.

## III. Ratios and Rates of Change (Page 12)

In real-life problems, the slope of a line can be interpreted as either $\qquad$ , if the $x$-axis and $y$-axis have the same unit of measure, or $\qquad$ , if the $x$-axis and $y$-axis have different units of measure.

An average rate of change is always calculated over $\qquad$ ـ.
IV. Graphing Linear Models (Pages 13-14)

The slope-intercept form of the equation of a line is
$\qquad$ . The graph of this equation is a line having a

What you should learn
How to interpret slope as a ratio or as a rate in a real-life application
$\qquad$
slope of $\qquad$ and a $y$-intercept at ( $\qquad$ ).

Example 1: Explain how to graph the linear equation


Example 2: Sketch and label the graph of (a) $y=-1$ and (b) $x=3$.
(a)

(b)


What you should learn How to sketch the graph of a linear equation in slope-intercept form

$$
y=-2 / 3 x-4 . \text { Then sketch its graph. }
$$

The equation of a vertical line cannot be written in slope-
intercept form because $\qquad$
$\qquad$ A vertical line
has an equation of the form $\qquad$ -

The equation of any line can be written in general form, which is given as $\qquad$ , where $A$ and $B$ are not both zero.

## V. Parallel and Perpendicular Lines (Page 14-15)

The relationship between the slopes of two lines that are parallel is $\qquad$
The relationship between the slopes of two lines that are perpendicular is $\qquad$

A line that is parallel to a line whose slope is 2 has slope $\qquad$ .
A line that is perpendicular to a line whose slope is 2 has slope
$\qquad$ .

What you should learn How to write equations of lines that are parallel or perpendicular to a given line

## Additional notes








## Homework Assignment

Page(s)
Exercises

## Section P. 3 Functions and Their Graphs

Objective: In this lesson you learned how to evaluate and graph a function and its transformations.

Course Number

Instructor

Date

Important Vocabulary Define each term or concept.
Independent variable

Dependent variable

## Function

## I. Functions and Function Notation (Pages 19-20)

Let $X$ and $Y$ be sets of real numbers. A real-valued function $\boldsymbol{f}$ of a real variable $\boldsymbol{x}$ from $X$ to $Y$ is $\qquad$ In this
situation, the domain of $f$ is $\qquad$ The number $y$
is the $\qquad$ of $x$ under $f$ and is denoted by , which is called the value of $\boldsymbol{f}$ at $\boldsymbol{x}$. The
range of $f$ is $\qquad$ and consists of
$\qquad$ -

In the function $y=2+8 x-3 x^{2}$, which variable is the independent variable? $\qquad$
Which variable is the dependent variable? $\qquad$

Example 1: If $f(w)=4 w^{3}-5 w^{2}-7 w+13$, describe how to find $f(-2)$ and then find the value of $f(-2)$.

[^0]II. The Domain and Range of a Function (Page 21)

The domain of a function can be described explicitly, or it may be described implicitly by $\qquad$
$\qquad$ . The implied domain is $\qquad$
whereas an explicitly defined domain is one that is $\qquad$ .

A function from $X$ to $Y$ is one-to-one if $\qquad$
$\qquad$
$\qquad$

A function from $X$ to $Y$ is onto if $\qquad$
III. The Graph of a Function (Page 22)

The graph of the function $y=f(x)$ consists of $\qquad$
What you should learn How to sketch the graph of a function

What you should learn
How to find the domain and range of a function

The Vertical Line Test states that $\qquad$

Example 2: Decide whether each graph represents $y$ as a function of $x$.
(a)

(b)


Sketch an example of each of the following eight basic graphs.

Squaring Function


Absolute Value Function


Rational Function


Identity Function


Square Root Function


Cubing Function


Sine Function
Cosine Function


Let $c$ be a positive real number. Complete the following representations of shifts in the graph of $y=f(x)$ :

1) Horizontal shift $c$ units to the right: $\qquad$

2) Horizontal shift $c$ units to the left: $\qquad$
3) Vertical shift $c$ units downward: $\qquad$
4) Vertical shift $c$ units upward: $\qquad$
5) Reflection (about the $x$-axis): $\qquad$
6) Reflection (about the $y$-axis): $\qquad$
7) Reflection (about the origin): $\qquad$

## V. Classifications and Combinations of Functions (Pages 24-26)

Elementary functions fall into the following three categories:

## What you should learn

How to classify functions and recognize combinations of functions

Let $n$ be a nonnegative integer. Then a polynomial function of $\boldsymbol{x}$ is given as

The numbers $a_{i}$ are $\qquad$ , with $a_{n}$ the $\qquad$

## What you should learn

How to identify different types of transformations of functions
$\qquad$
$\qquad$ and $a_{0}$ the $\qquad$ of the
polynomial function. If $a_{n} \neq 0$, then $n$ is the $\qquad$ of
the polynomial function.

Just as a rational number can be written as the quotient of two integers, a rational function can be written as $\qquad$
$\qquad$ -.

An algebraic function of $x$ is one that $\qquad$
$\qquad$ . Functions that are not algebraic are $\qquad$ -.

Two functions can be combined by the operations of
to create new functions.

Functions can also be combined through composition. The resulting function is called $a(n)$ $\qquad$ .

Let $f$ and $g$ be functions. The function given by $(f \circ g)(x)=$
$\qquad$ is called the composite of $f$ with $g$. The
domain of $f \circ g$ is $\qquad$

Example 3: Let $f(x)=3 x+4$ and let $g(x)=2 x^{2}-1$. Find (a) $(f \circ g)(x)$ and (b) $(g \circ f)(x)$.

An $x$-intercept of a graph is defined to be a point $(a, 0)$ at which the graph crosses the $x$-axis. If the graph represents a function $f$, the number $a$ is a $\qquad$ In other words, the zeros of a function $f$ are $\qquad$
$\qquad$ .

A function is even if $\qquad$
$\qquad$ . A function is odd if

The function $y=f(x)$ is even if $\qquad$ .

The function $y=f(x)$ is odd if $\qquad$ .

Example 4: Decide whether the function $f(x)=4 x^{2}-3 x+1$ is even, odd, or neither.


## Homework Assignment

Page(s)
Exercises

## Section P. 4 Fitting Models to Data

Objective: In this lesson you learned how to fit a mathematical model to a real-life data set.

Course Number Instructor Date

## I. Fitting a Linear Model to Data (Page 31)

Describe how to find a linear model to represent a set of paired data.

What you should learn How to fit a linear model to a real-life data set

What does the correlation coefficient r indicate?

Example 1: Find a linear model to represent the following data. Round results to the nearest hundredth.

| $(-2.1,19.4)$ | $(-3.0,19.7)$ | $(8.8,16.9)$ |
| :--- | :--- | :--- |
| $(0,18.9)$ | $(6.1,17.4)$ | $(-4.0,20.0)$ |
| $(3.6,18.1)$ | $(0.9,18.8)$ | $(2.0,18.5)$ |

## II. Fitting a Quadratic Model to Data (Page 32)

Example 2: Find a model to represent the following data.
Round results to the nearest hundredth.

| $(-5,68)$ | $(-3,30)$ | $(-2,22)$ |
| :--- | :--- | :--- |
| $(-1,11)$ | $(0,3)$ | $(2,8)$ |
| $(4,23)$ | $(5,43)$ | $(7,80)$ |

III. Fitting a Trigonometric Model to Data (Page 33)

Example 3: Find a trigonometric function to model the data in the following table.

| $x$ | 0 | $\pi / 2$ | $\pi$ | $3 \pi / 2$ | $2 \pi$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $y$ | 2 | 4 | 2 | 0 | 2 |



## Homework Assignment

Page(s)
Exercises

## Chapter 1 Limits and Their Properties

What you should learn
How to understand what calculus is and how it compares with precalculus

List some problem-solving strategies that will be helpful in the study of calculus.
II. The Tangent Line Problem (Page 45)

In the tangent line problem, you are given $\qquad$
and are asked to $\qquad$
What you should learn
How to understand that the tangent line problem is basic to calculus

Except for cases involving a vertical tangent line, the problem of finding the tangent line at a point $P$ is equivalent to $\qquad$ . You can
approximate this slope by using a line through $\qquad$ . Such a line
is called a $\qquad$ .

If $P(c, f(c))$ is the point of tangency and $Q(c+\Delta x, f(c+\Delta x))$ is a second point on the graph of $f$, the slope of the secant line through these two points can be found using precalculus and is given by $m_{\text {sec }}=$

As point $Q$ approaches point $P$, the slope of the secant line approaches the slope of the $\qquad$ When such a "limiting position" exists, the slope of the tangent line is said to be $\qquad$
$\qquad$
III. The Area Problem (Page 46)

A second classic problem in calculus is $\qquad$

## What you should learn

 How to understand that the area problem is also basic to calculus$\qquad$ . This problem can also be solved with $\qquad$ . In this case, the limit process is applied to $\qquad$
$\qquad$ -

Consider the region bounded by the graph of the function $y=f(x)$, the $x$-axis, and the vertical lines $x=a$ and $x=b$. You can approximate the area of the region with $\qquad$
$\qquad$ . As you increase the number of rectangles, the approximation tends to become $\qquad$
$\qquad$
$\qquad$ Your goal is to determine the
limit of the sum of the areas of the rectangles as $\qquad$
$\qquad$ .

## Homework Assignment

Page(s)
Exercises

## Section 1.2 Finding Limits Graphically and Numerically

Course Number Instructor Date
I. An Introduction to Limits (Pages 48-49)

The notation for a limit is $\lim _{x \rightarrow c} f(x)=L$, which is read as

The informal description of a limit is as follows: $\qquad$

Describe how to estimate the limit $\lim _{x \rightarrow-2} \frac{x^{2}+4 x+4}{x+2}$ numerically.

The existence or nonexistence of $f(x)$ at $x=c$ has no bearing on the existence of $\qquad$ _.
II. Limits That Fail to Exist (Pages 50-51)

If a function $f(x)$ approaches a different number from the right side of $x=c$ than it approaches from the left side, then $\qquad$
What you should learn How to learn different ways that a limit can fail to exist

What you should learn How to estimate a limit using a numerical or graphical approach

If $f(x)$ is not approaching a real number $L$-that is, if $f(x)$ increases or decreases without bound-as $x$ approaches $c$, you can conclude that $\qquad$ .

The limit of $f(x)$ as $x$ approaches $c$ also does not exist if $f(x)$ oscillates between $\qquad$ as $x$ approaches $c$.

## III. A Formal Definition of Limit (Pages 52-54)

The $\varepsilon-\delta$ definition of limit assigns mathematically rigorous
meanings to the two phrases $\qquad$
$\qquad$ and $\qquad$ used in the informal description of limit.

Let $\varepsilon$ represent $\qquad$ . Then the phrase " $f(x)$ becomes arbitrarily close to $L$ " means that $f(x)$ lies in the interval $\qquad$ . Using absolute value, you can write this as $\qquad$ .The phrase
" $x$ approaches $c$ " means that there exists a positive number $\delta$ such that $x$ lies in either the interval $\qquad$ or the interval $\qquad$ This fact can be concisely expressed by the double inequality $\qquad$ .

State the formal $\varepsilon-\delta$ definition of limit.

Example 1: Use the $\varepsilon-\delta$ definition of limit to prove that

$$
\lim _{x \rightarrow-2}(10-3 x)=16
$$

## Homework Assignment

Page(s)
Exercises

## Section 1.3 Evaluating Limits Analytically

Objective: In this lesson you learned how to evaluate limits analytically.

Course Number

Instructor

Date

## I. Properties of Limits (Pages 59-61)

The limit of $f(x)$ as $x$ approaches $c$ does not depend on the value of $f$ at $x=c$. However, it may happen that the limit is precisely $f(c)$. In such cases, the limit can be evaluated by $\qquad$

What you should learn How to evaluate a limit using properties of limits

Theorem 1.1 Let $b$ and $c$ be real numbers and let $n$ be a positive integer. Complete each of the following properties of limits.

1. $\lim _{x \rightarrow c} b=$ $\qquad$
2. $\lim _{x \rightarrow c} x=$ $\qquad$
3. $\lim _{x \rightarrow c} x^{n}=$ $\qquad$

Theorem 1.2 Let $b$ and $c$ be real numbers, let $n$ be a positive integer, and let $f$ and $g$ be functions with the following limits.

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=K
$$

Complete each of the following statements about operations with limits.

1. Scalar multiple: $\quad \lim _{x \rightarrow c}[b f(x)]=$ $\qquad$
2. Sum or difference: $\quad \lim _{x \rightarrow c}[f(x) \pm g(x)]=$ $\qquad$
3. Product:

$$
\lim _{x \rightarrow c}[f(x) \cdot g(x)]=
$$

$\qquad$
4. Quotient: $\quad \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=$ $\qquad$
5. Power:

$$
\lim _{x \rightarrow c}[f(x)]^{n}=
$$

$\qquad$

Example 1: Find the limit: $\lim _{x \rightarrow 4} 3 x^{2}$.

The limit of a polynomial function $p(x)$ as $x \rightarrow c$ is simply the value of $p$ at $x=c$. This direction substitution property is value for $\qquad$
$\qquad$

Theorem 1.3 If $p$ is a polynomial function and $c$ is a real
number, then $\lim _{x \rightarrow c} p(x)=$ $\qquad$ . If $r$ is a rational
function given by $r(x)=p(x) / q(x)$ and $c$ is a real number such that $q(c) \neq 0$, then $\lim _{x \rightarrow c} r(x)=$ $\qquad$ -.

Theorem 1.4 Let $n$ be a positive integer. The following limit is valid for all $c$ if $n$ is odd, and is valid for $c>0$ if $n$ is even:

$$
\lim _{x \rightarrow c} \sqrt[n]{x}=
$$

$\qquad$

Theorem 1.5 If $f$ and $g$ are functions such that $\lim _{x \rightarrow c} g(x)=L$ and $\lim _{x \rightarrow L} f(x)=f(L)$, then $\lim _{x \rightarrow c} f(g(x))=$ $\qquad$ -.

Theorem 1.6 Let $c$ be a real number in the domain of the given trigonometric function. Complete each of the following limit statements.

1. $\lim _{x \rightarrow c} \sin x=$ $\qquad$
2. $\lim _{x \rightarrow c} \cos x=$ $\qquad$
3. $\lim _{x \rightarrow c} \tan x=$ $\qquad$
4. $\lim _{x \rightarrow c} \cot x=$ $\qquad$
5. $\lim _{x \rightarrow c} \sec x=$ $\qquad$
6. $\lim _{x \rightarrow c} \csc x=$ $\qquad$
Example 2: Find the following limits.
a. $\lim _{x \rightarrow 4} \sqrt[4]{5 x^{2}+1}$
b. $\lim _{x \rightarrow \pi} \cos x$

## II. A Strategy for Finding Limits (Page 62)

Theorem 1.7 Let $c$ be a real number and let $f(x)=g(x)$ for all $x \neq c$ in an open interval containing $c$. If the limit of $g(x)$ as $x$ approaches $c$ exists, then the limit of $f(x)$ $\qquad$ and $\lim _{x \rightarrow c} f(x)=$ $\qquad$

This theorem states that if two functions agree at all $\qquad$
$\qquad$ , then they have identical limit
behavior at $x=c$.

List four steps in the strategy for finding limits.

## III. Dividing Out and Rationalizing Techniques (Pages 63-64)

An expression such as the meaningless fractional form $0 / 0$ is called a(n) $\qquad$ because you cannot, from the form alone, determine the limit. When you try to evaluate a limit and encounter this form, remember that you must rewrite the fraction so that the new denominator $\qquad$
$\qquad$ One way to do this is to $\qquad$ , using the dividing out
$\qquad$ numerator.

Example 3: Find the following limit: $\lim _{x \rightarrow 3} \frac{x^{2}-8 x+15}{x-3}$.

If you apply direct substitution to a rational function and obtain $r(c)=\frac{p(c)}{q(c)}=\frac{0}{0}$, then by the Factor Theorem of Algebra, you can conclude that $(x-c)$ must be a $\qquad$ to
both $p(x)$ and $q(x)$.

## IV. The Squeeze Theorem (Pages 65-66)

Theorem 1.8 The Squeeze Theorem If $h(x) \leq f(x) \leq g(x)$ for all $x$ in an open interval containing $c$, except possibly at $c$ itself,

What you should learn
How to evaluate a limit using the Squeeze Theorem and if $\lim _{x \rightarrow c} h(x)=L=\lim _{x \rightarrow c} g(x)$, then $\lim _{x \rightarrow c} f(x)$ exists and is equal to $\qquad$

Theorem 1.9 Two Special Trigonometric Limits

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\square \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=
$$



Homework Assignment
Page(s)
Exercises

## Section 1.4 Continuity and One-Sided Limits

Objective: In this lesson you learned how to determine continuity at a point and on an open interval, and how to determine

Course Number Instructor

Date one-sided limits.

Define each term or concept.
Discontinuity

Greatest integer function $f(x)=x$

## I. Continuity at a Point and on an Open Interval

 (Pages 70-71)To say that a function $f$ is continuous at $x=c$ means that there is no $\qquad$ in the graph of $f$ at $c$ : the graph
$\qquad$ -. is unbroken and there are no

A function $f$ is continuous at $\boldsymbol{c}$ if the following three conditions are met:
1.
2.
3.

If $f$ is continuous at each point in the interval $(a, b)$, then it is
$\qquad$ . A
function that is continuous on the entire real line $(-\infty, \infty)$ is
$\qquad$ -.

A discontinuity at $c$ is called removable if $\qquad$
$\qquad$
$\qquad$ .

## What you should learn

 How to determine continuity at a point and continuity on a open intervalA discontinuity at $c$ is called nonremovable if $\qquad$
$\qquad$
$\qquad$

## II. One-Sided Limits and Continuity on a Closed Interval (Pages 72-74)

A one-sided limit is the limit of a function $f(x)$ at $c$ from either just the $\qquad$ of $c$ or just the $\qquad$ of $c$.

## What you should learn

How to determine onesided limits and continuity on a closed interval
$\lim _{x \rightarrow c^{+}} f(x)=L$ is a one-sided limit from the $\qquad$ and means $\lim _{x \rightarrow c^{-}} f(x)=L$ is a one-sided limit from the $\qquad$ and means

One-sided limits are useful in taking limits of functions involving $\qquad$ -.

When the limit from the left is not equal to the limit from the right, the (two-sided) limit $\qquad$ .

Let $f$ be defined on a closed interval $[a, b]$. If $f$ is continuous on the open interval $(a, b)$ and $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ and $\lim _{x \rightarrow b^{-}} f(x)=f(b)$, then $f$ is $\qquad$ .

Moreover, $f$ is continuous $\qquad$ at $a$ and continuous
$\qquad$ at $b$.

## III. Properties of Continuity (Pages 75-76)

If $b$ is a real number and $f$ and $g$ are continuous at $x=c$, then the

What you should learn How to use properties of continuity following functions are also continuous at $c$.
1.
2.
3.
4.

A polynomial function is continuous at $\qquad$
$\qquad$ .

A rational function is continuous at $\qquad$
$\qquad$ -.

If $g$ is continuous at $c$ and $f$ is continuous at $g(c)$, then the composite function given by $(f \circ g)(x)=f(g(x))$ is continuous
$\qquad$

## IV. The Intermediate Value Theorem (Pages 77-78)

Intermediate Value Theorem If $f$ is continuous on the closed interval $[a, b], f(a) \neq f(b)$, and $k$ is any number between $f(a)$ and

What you should learn How to understand and use the Intermediate Value Theorem $f(b)$, then $\qquad$
$\qquad$ .

Explain why the Intermediate Value Theorem is called an existence theorem.

The Intermediate Value Theorem states that for a continuous function $f$, if $x$ takes on all values between $a$ and $b, f(x)$ must $\qquad$
$\qquad$ -

The Intermediate Value Theorem often can be used to locate zeros of a function that is continuous on a closed interval. Specifically, if $f$ is continuous on $[a, b]$ and $f(a)$ and $f(b)$ differ in sign, the Intermediate Value Theorem guarantees $\qquad$
$\qquad$
$\qquad$ .

Explain how the bisection method can be used to approximate the real zeros of a continuous function.

## Additional notes



## Homework Assignment

Page(s)
Exercises

## Section 1.5 Infinite Limits

Objective: In this lesson you learned how to determine infinite limits and find vertical asymptotes.

Course Number

Instructor

Date

What you should learn How to determine infinite limits from the left and from the right

Let $f$ be a function that is defined at every real number in some open interval containing $c$ (except possibly at $c$ itself). The statement $\lim _{x \rightarrow c} f(x)=\infty$ means $\qquad$
$\qquad$ Similarly, the statement
$\lim _{x \rightarrow c} f(x)=-\infty$ means $\qquad$

To define the infinite limit from the left, replace $0<|x-c|<\delta$ by $\qquad$ To define the infinite limit from the right, replace $0<|x-c|<\delta$ by $\qquad$ .

Be sure to see that the equal sign in the statement $\lim f(x)=\infty$ does not meant that $\qquad$ ! On
the contrary, it tells you how the limit by denoting the unbounded behavior of $f(x)$ as $x$ approaches $c$.

## II. Vertical Asymptotes (Pages 84-87)

If $f(x)$ approaches infinity (or negative infinity) as $x$ approaches $c$ from the right or the left, then the line $x=c$ is a $\qquad$
What you should learn
How to find and sketch the vertical asymptotes of the graph of a function

Let $f$ and $g$ be continuous on an open interval containing $c$. If $f(c) \neq 0, g(c)=0$, and there exists an open interval containing $c$ such that $g(x) \neq 0$ for all $x \neq c$ in the interval, then the graph

[^1]of the function given by $h(x)=\frac{f(x)}{g(x)}$ has $\qquad$ -都 .

If both the numerator and denominator are 0 at $x=c$, you obtain the $\qquad$ and you
cannot determine the limit behavior at $x=c$ without further investigation, such as simplifying the expression.

Example 1: Determine all vertical asymptotes of the graph of

$$
f(x)=\frac{x^{2}+9 x+20}{x^{2}+2 x-15}
$$

Theorem 1.15 Let $c$ and $L$ be real numbers and let $f$ and $g$ be functions such that

$$
\lim _{x \rightarrow c} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=L
$$

Complete each of the following statements about operations with limits.

1. Sum or difference: $\lim _{x \rightarrow c}[f(x) \pm g(x)]=$ $\qquad$
2. Product: $\quad \lim _{x \rightarrow c}[f(x) \cdot g(x)]=$ $\qquad$
$\lim _{x \rightarrow c}[f(x) \cdot g(x)]=$ $\qquad$
3. Quotient: $\quad \lim _{x \rightarrow c} \frac{g(x)}{f(x)}=$ $\qquad$

Example 2: Determine the limit: $\lim _{x \rightarrow 3}\left(\frac{1}{x-3}-3\right)$.

## Homework Assignment

Page(s)

Exercises

## Chapter 2 Differentiation

## Section 2.1 The Derivative and the Tangent Line Problem

Course Number

Date

Objective: In this lesson you learned how to find the derivative of a function using the limit definition and understand the relationship between differentiability and continuity.

Important Vocabulary Define each term or concept.
Differentiation
Differentiable
I. The Tangent Line Problem (Pages 96-99)

Essentially, the problem of finding the tangent line at a point $P$ boils down to $\qquad$ You can approximate
this slope using $\qquad$ through the
point of tangency $(c, f(c))$ and a second point on the curve
$(c+\Delta x, f(c+\Delta x))$. The slope of the secant line through these two
points is $m_{\text {sec }}=$ $\qquad$

The right side of this equation for the slope of a secant line is called a $\qquad$ . The denominator $\Delta x$ is the $\qquad$ and the numerator
$\Delta y=f(c+\Delta x)-f(c)$ is the $\qquad$ .

The beauty of this procedure is that you can obtain more and more accurate approximations of the slope of the tangent line by $\qquad$
$\qquad$ .

If $f$ is defined on an open interval containing $c$, and if the limit $\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=m$ exists, then the line passing
through $(c, f(c))$ with slope $m$ is $\qquad$
$\qquad$ -

The slope of the tangent line to the graph of $f$ at the point $(c, f(c))$ is also called $\qquad$
$\qquad$ _.

Example 1: Find the slope of the graph of $f(x)=9-\frac{x}{2}$ at the point $(4,7)$.

Example 2: Find the slope of the graph of $f(x)=2-3 x^{2}$ at the point $(-1,-1)$.

The definition of a tangent line to a curve does not cover the possibility of a vertical tangent line. If $f$ is continuous at $c$ and $\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=\infty$ or $\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=-\infty$, the vertical line $x=c$ passing through $(c, f(c))$ is $\qquad$
$\qquad$ to the graph of $f$.
II. The Derivative of a Function (Pages 99-101)

The $\qquad$ is given by
$f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$, provided the limit exists. For all $x$

## What you should learn

How to use the limit definition to find the derivative of a function
for which this limit exists, $f^{\prime}$ is $\qquad$ -.

The derivative of a function of $x$ gives the $\qquad$
$\qquad$ to the graph of $f$ at the point $(x, f(x))$, provided that the graph has a tangent line at this point.

A function is differentiable on an open interval $(\boldsymbol{a}, \boldsymbol{b})$ if $\qquad$ .

Example 3: Find the derivative of $f(t)=4 t^{2}+5$.
III. Differentiability and Continuity (Pages 101-103)

Name some situations in which a function will not be differentiable at a point.

If a function $f$ is differentiable at $x=c$, then $\qquad$ —.

Complete the following statements.

1. If a function is differentiable at $x=c$, then it is continuous at $x=c$. So, differentiability $\qquad$ continuity.
2. It is possible for a function to be continuous at $x=c$ and not be differentiable at $x=c$. So, continuity $\qquad$
$\qquad$ differentiability.
$\qquad$

What you should learn How to understand the relationship between differentiability and continuity

## Additional notes



## Homework Assignment

Page(s)
Exercises

## Section 2.2 Basic Differentiation and Rates of Change

Objective: In this lesson you learned how to find the derivative of a function using basic differentiation rules.

Course Number

Instructor

Date
I. The Constant Rule (Page 107)

The derivative of a constant function is $\qquad$ .

If $c$ is a real number, then $\frac{d}{d x}[c]=$ $\qquad$ -.
II. The Power Rule (Pages 108-109)

The Power Rule states that if $n$ is a rational number, then the function $f(x)=x^{n}$ is differentiable and
$\frac{d}{d x}\left[x^{n}\right]=$ $\qquad$ . For $f$ to be differentiable at $x=0, n$ must be a number such that $x^{n-1}$ is $\qquad$ .

Also, $\frac{d}{d x}[x]=$ $\qquad$ .

Example 1: Find the derivative of the function $f(x)=\frac{1}{x^{3}}$.

Example 2: Find the slope of the graph of $f(x)=x^{5}$ at $x=2$.

## III. The Constant Multiple Rule (Pages 110-111)

The Constant Multiple Rule states that if $f$ is a differentiable function and $c$ is a real number then $c f$ is also differentiable and $\frac{d}{d x}[c f(x)]=$ $\qquad$ -

Informally, the Constant Multiple Rule states that $\qquad$ .
$\qquad$
$\qquad$
$\qquad$

What you should learn How to find the derivative of a function using the Constant Rule

## What you should learn

 How to find the derivative of a function using the Power RuleWhat you should learn How to find the derivative of a function using the Constant Multiple Rule

Example 3: Find the derivative of $f(x)=\frac{2 x}{5}$

The Constant Multiple Rule and the Power Rule can be combined into one rule. The combination rule is
$\frac{d}{d x}\left[c x^{n}\right]=$ $\qquad$ .

Example 4: Find the derivative of $y=\frac{2}{5 x^{5}}$

## IV. The Sum and Difference Rules (Page 111)

The Sum and Difference Rules of Differentiation state that the sum (or difference) of two differentiable functions $f$ and $g$ is itself differentiable. Moreover, the derivative of $f+g$ (or

What you should learn
How to find the derivative of a function using the Sum and Difference Rules $f-g$ ) is the sum (or difference) of the derivatives of $f$ and $g$.

That is, $\frac{d}{d x}[f(x)+g(x)]=$ $\qquad$ and $\frac{d}{d x}[f(x)-g(x)]=$ $\qquad$

Example 5: Find the derivative of $f(x)=2 x^{3}-4 x^{2}+3 x-1$
V. Derivatives of Sine and Cosine Functions (Page 112)
$\frac{d}{d x}[\sin x]=$ $\qquad$
$\frac{d}{d x}[\cos x]=$ $\qquad$

What you should learn
How to find the derivative of the sine function and of the cosine function

Example 6: Differentiate the function $y=x^{2}-2 \cos x$.
VI. Rates of Change (Pages 113-114)

The derivative can also be used to determine $\qquad$

What you should learn
How to use derivatives to find rates of change

Give some examples of real-life applications of rates of change.

The function $s$ that gives the position (relative to the origin) of an object as a function of time $t$ is called a $\qquad$ -.

The average velocity of an object that is moving in a straight line is found as follows.

$$
\text { Average velocity }=\square=
$$

Example 7: If a ball is dropped from the top of a building that is 200 feet tall, and air resistance is neglected, the height $s$ (in feet) of the ball at time $t$ (in seconds) is given by $s=-16 t^{2}+200$. Find the average velocity of the object over the interval $[1,3]$.

If $s=s(t)$ is the position function for an object moving along a straight line, the (instantaneous) velocity of the object at time $t$ is

$$
v(t)=
$$

$\qquad$
$\qquad$

In other words, the velocity function is the $\qquad$ the position function. Velocity can be $\qquad$
$\qquad$ . The $\qquad$ of an object is the absolute value of its velocity. Speed cannot be $\qquad$ .

[^2]Example 8: If a ball is dropped from the top of a building that is 200 feet tall, and air resistance is neglected, the height $s$ (in feet) of the ball at time $t$ (in seconds) is given by $s(t)=-16 t^{2}+200$. Find the velocity of the ball when $t=3$.

The position function for a free-falling object (neglecting air resistance) under the influence of gravity can be represented by the equation $\qquad$ , where $s_{0}$ is the initial height of the object, $v_{0}$ is the initial velocity of the object, and $g$ is the acceleration due to gravity. On Earth, the value of $g$ is

## Homework Assignment

Page(s)
Exercises

## Section 2.3 Product and Quotient Rules and Higher-Order Derivatives

Objective: In this lesson you learned how to find the derivative of a

Course Number Instructor

Date function using the Product Rule and Quotient Rule.
I. The Product Rule (Pages 119-120)

The product of two differentiable functions $f$ and $g$ is itself differentiable. The Product Rule states that the derivative of the

What you should learn How to find the derivative of a function using the Product Rule $f g$ is equal to $\qquad$
—. That is,
$\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$.
Example 1: Find the derivative of $y=\left(4 x^{2}+1\right)(2 x-3)$.

The Product Rule can be extended to cover products that have more than two factors. For example, if $f, g$, and $h$ are
differentiable functions of $x$, then
$\frac{d}{d x}[f(x) g(x) h(x)]=$ $\qquad$

Explain the difference between the Constant Multiple Rule and the Product Rule.
II. The Quotient Rule (Pages 121-123)

The quotient $f / g$ of two differentiable functions $f$ and $g$ is itself differentiable at all values of $x$ for which $g(x) \neq 0$. The derivative of $f / g$ is given by $\qquad$
$\qquad$ , all divided
by $\qquad$ .
This is called the $\qquad$ , and is given by
$\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}, \quad g(x) \neq 0$.

Example 2: Find the derivative of $y=\frac{2 x+5}{3 x}$.

With the Quotient Rule, it is a good idea to enclose all factors and derivatives $\qquad$ and to pay special attention to $\qquad$
$\qquad$ .
III. Derivatives of Trigonometric Functions (Pages 123-124)
$\frac{d}{d x}[\tan x]=$ $\qquad$
$\frac{d}{d x}[\cot x]=$ $\qquad$
$\frac{d}{d x}[\sec x]=$ $\qquad$
$\frac{d}{d x}[\csc x]=$ $\qquad$

Example 3: Differentiate the function $f(x)=\sin x \sec x$.

## What you should learn

How to find the derivative of a function using the Quotient Rule

## IV. Higher-Order Derivatives (Page 125)

The derivative of $f^{\prime}(x)$ is the second derivative of $f(x)$ and is denoted by $\qquad$ The derivative of $f^{\prime \prime}(x)$ is the

What you should learn How to find a higherorder derivative of a function
$\qquad$ of $f(x)$ and is denoted by $f^{\prime \prime \prime}$.

These are examples of $\qquad$ of $f(x)$.

The following notation is used to denoted the $\qquad$ of the function $y=f(x)$ :
$\frac{d^{6} y}{d x^{6}} \quad D_{x}^{6}[y] \quad y^{(6)} \quad \frac{d^{6}}{d x^{6}}[f(x)] \quad f^{(6)}(x)$

Example 4: Find $y^{(5)}$ for $y=2 x^{7}-x^{5}$.

Example 5: On the moon, a ball is dropped from a height of 100 feet. Its height $s$ (in feet) above the moon's surface is given by $s=-\frac{27}{10} t^{2}+100$. Find the height, the velocity, and the acceleration of the ball when $t=5$ seconds.

Example 6: Find $y^{\prime \prime \prime}$ for $y=\sin x$.

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 2.4 The Chain Rule

Objective: In this lesson you learned how to find the derivative of a function using the Chain Rule and General Power Rule.

Course Number Instructor

Date

## I. The Chain Rule (Pages 130-132)

The Chain Rule, one of the most powerful differentiation rules, deals with $\qquad$ functions.

Basically, the Chain Rule states that if $y$ changes $d y / d u$ times as fast as $u$, and $u$ changes $d u / d x$ times as fast as $x$, then $y$ changes
times as fast as $x$.

The Chain Rule states that if $y=f(u)$ is a differentiable
function of $u$, and $u=g(x)$ is a differentiable function of $x$, then $y=f(g(x))$ is a differentiable function of $x$, and
$\frac{d y}{d x}=\square$ or, equivalently,
$\frac{d}{d x}[f(g(x))]=$ $\qquad$

When applying the Chain Rule, it is helpful to think of the composite function $f \circ g$ as having two parts, an inner part and an outer part. The Chain Rule tells you that the derivative of $y=f(u)$ is the derivative of the $\qquad$ (at the inner function $u$ ) times the derivative of the $\qquad$
$\qquad$ . That is, $y^{\prime}=$ $\qquad$ .

Example 1: Find the derivative of $y=\left(3 x^{2}-2\right)^{5}$.

[^3]II. The General Power Rule (Pages 132-133)

The General Power Rule is a special case of the $\qquad$
What you should learn How to find the derivative of a function using the General Power Rule

The General Power Rule states that if $y=[u(x)]^{n}$, where $u$ is a differentiable function of $x$ and $n$ is a rational number, then $\frac{d y}{d x}=\quad$ or, equivalently, $\frac{d}{d x}\left[u^{n}\right]=$ $\qquad$

Example 2: Find the derivative of $y=\frac{4}{(2 x-1)^{3}}$.
III. Simplifying Derivatives (Page 134)

Example 3: Find the derivative of $y=\frac{3 x^{2}}{\left(1-x^{3}\right)^{2}}$ and simplify.

What you should learn How to simplify the derivative of a function using algebra

## IV. Trigonometric Functions and the Chain Rule (Pages 135-136)

Complete each of the following "Chain Rule versions" of the derivatives of the six trigonometric functions.

What you should learn How to find the derivative of a trigonometric function using the Chain Rule
$\frac{d}{d x}[\sin u]=$ $\qquad$
$\frac{d}{d x}[\cos u]=$ $\qquad$
$\frac{d}{d x}[\tan u]=$ $\qquad$
$\frac{d}{d x}[\cot u]=$ $\qquad$
$\frac{d}{d x}[\sec u]=$ $\qquad$
$\frac{d}{d x}[\csc u]=$ $\qquad$

Example 4: Differentiate the function $y=\sec 4 x$.

Example 5: Differentiate the function $y=x^{2}-\cos (2 x+1)$.

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 2.5 Implicit Differentiation

Objective: In this lesson you learned how to find the derivative of a function using implicit differentiation.

Course Number Instructor

Date
I. Implicit and Explicit Functions (Page 141)

Up to this point in the text, most functions have been expressed in explicit form $y=f(x)$, meaning that $\qquad$ However, some functions are only $\qquad$ by an equation.

Give an example of a function in which $y$ is implicitly defined as a function of $x$.

Implicit differentiation is a procedure for taking the derivative of an implicit function when you are unable to $\qquad$ .

To understand how to find $\frac{d y}{d x}$ implicitly, realize that the differentiation is taking place $\qquad$ This means that when you differentiate terms involving $x$ alone, $\qquad$
$\qquad$ . However, when you
differentiate terms involving $y$, you must apply $\qquad$
because you are assuming that $y$ is defined
$\qquad$ as a differentiable function of $x$.

Example 1: Differentiate the expression with respect to $x$ :

$$
4 x+y^{2}
$$

What you should learn How to distinguish between functions written in implicit form and explicit form

## II. Implicit Differentiation (Pages 142-145)

Consider an equation involving $x$ and $y$ in which $y$ is a differentiable function of $x$. List the four guidelines for applying implicit differentiation to find $d y / d x$.
1.
2.
3.
4.

Example 2: Find $d y / d x$ for the equation $4 y^{2}-x^{2}=1$.

## Homework Assignment

Page(s)
Exercises

## Section 2.6 Related Rates

Objective: In this lesson you learned how to find a related rate.

Course Number Instructor

Date

What you should learn How to find a related rate
II. Problem Solving with Related Rates (Pages 150-153)

List the guidelines for solving a related-rate problems.
1.

What you should learn
How to use related rates to solve real-life problems
2.
3.
4.

Example 2: Write a mathematical model for the following related-rate problem situation:
The population of a city is decreasing at the rate of 100 people per month.

## Additional notes

Homework Assignment
Page(s)
Exercises

## Chapter 3 Applications of Differentiation

## Section 3.1 Extrema on an Interval

Objective: In this lesson you learned how to use a derivative to locate the minimum and maximum values of a function on a closed interval.

## Important Vocabulary Define each term or concept.

## Relative maximum

Relative minimum

Critical number

## I. Extrema of a Function (Page 164)

Let $f$ be defined on an interval $I$ containing $c$.

1. $f(c)$ is the minimum of $\boldsymbol{f}$ on $\boldsymbol{I}$ if $\qquad$

What you should learn
How to understand the definition of extrema of a function on an interval
2. $f(c)$ is the maximum of $\boldsymbol{f}$ on $\boldsymbol{I}$ if $\qquad$
$\qquad$
-.

The minimum and maximum of a function on an interval are the
$\qquad$ , or extrema (the singular for of extrema is $\qquad$ ), of the function on the interval. The minimum and maximum of a function on an interval are also called the $\qquad$
$\qquad$ or the $\qquad$
$\qquad$ , on the interval.

The Extreme Value Theorem states that if $f$ is continuous on a closed interval $[a, b]$, then $\qquad$
$\qquad$ .
II. Relative Extrema and Critical Numbers (Pages 165-166)

If $f$ has a relative minimum or relative maximum when $x=c$, then $c$ is a $\qquad$ of $f$.
III. Finding Extrema on a Closed Interval (Pages 167-168)

To find the extrema of a continuous function $f$ on a closed interval $[a, b]$, use the following steps.
1.
2.
3.
4.

Example 1: Find the extrema of the function

$$
f(x)=x^{3}+6 x^{2}-15 x+2 \text { on the interval }[-6,6]
$$

The critical numbers of a function need not produce $\qquad$ -.

## Homework Assignment

Page(s)
Exercises

| Section 3.2 Rolle's Theorem and the Mean Value Theorem | Course Number |  |
| :--- | :--- | :--- |
| Objective: | In this lesson you learned how many of the results in this <br> chapter depend on two important theorems called <br> Rolle's Theorem and the Mean Value Theorem. | Instructor |

I. Rolle's Theorem (Pages 172-173)

The Extreme Value Theorem states that a continuous function on a closed interval $[a, b]$ must have $\qquad$ . Both of these
values, however, can occur at $\qquad$ .

Rolle's Theorem gives conditions that guarantee the existence of an extreme value in $\qquad$
$\qquad$ .

The statement of Rolle's Theorem says: Let $f$ be continuous on the closed interval $[a, b]$ and differentiable on the open interval $(a, b)$. If $f(a)=f(b)$, then there is $\qquad$
$\qquad$ -.

If the conditions of Rolle's Theorem are satisfied, then there must be at least one $x$-value between $a$ and $b$ at which the graph of $f$ has $\qquad$ -.
Alternatively, Rolle's Theorem states that if $f$ satisfies the conditions of the theorem, there must be at least one point between $a$ and $b$ at which the derivative is $\qquad$ .
II. The Mean Value Theorem (Pages 174-175)

The Mean Value Theorem states that if $f$ is continuous on
$\qquad$ and differentiable

What you should learn
How to understand and use Rolle's Theorem

What you should learn
How to understand and use the Mean Value Theorem
on $\qquad$ then there
exists $\qquad$ such that
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

[^4]The Mean Value Theorem has implications for both basic interpretations of the derivative. Geometrically, the theorem guarantees the existence of $\qquad$
$\qquad$ . In terms of rates of change,
the Mean Value Theorem implies that there must be $\qquad$
$\qquad$
$\qquad$
$\qquad$

A useful alternative form of the Mean Value Theorem is as
follows: If $f$ is continuous on $[a, b]$ and differentiable on $(a, b)$, then there exists a number $c$ in $(a, b)$ such that

## Homework Assignment

Page(s)
Exercises

# Section 3.3 Increasing and Decreasing Functions and the First Derivative Test 

Objective: In this lesson you learned how to use the first derivative

Course Number Instructor

Date to determine whether a function is increasing or decreasing.
Important Vocabulary Define each term or concept.

Increasing function

Decreasing function
I. Increasing and Decreasing Functions (Pages 179-180)

A function is increasing if its graph moves $\qquad$ as $x$ moves $\qquad$ . A function is decreasing if its graph moves $\qquad$ as $x$ moves $\qquad$ .

## What you should learn

 How to determine intervals on which a function is increasing or decreasingLet $f$ be a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval $(a, b)$.

If $f^{\prime}(x)>0$ for all $x$ in $(a, b)$, then $f$ is $\qquad$ on $[a, b]$.

If $f^{\prime}(x)<0$ for all $x$ in $(a, b)$, then $f$ is $\qquad$ on $[a, b]$.

If $f^{\prime}(x)=0$ for all $x$ in $(a, b)$, then $f$ is $\qquad$ on $[a, b]$.

The first of these tests for increasing and decreasing functions can be interpreted as follows: if the first derivative of a function is positive for all values of $x$ in an interval, then the function is
$\qquad$ on that interval.

Interpret the other two tests in a similar way.

Example 1: Find the open intervals on which the function is increasing or decreasing: $f(x)=-x^{2}+10 x-21$

Let $f$ be a continuous function on the interval $(a, b)$. List the steps for finding the intervals on which $f$ is increasing or decreasing.
1.
2.
3.

A function is strictly monotonic on an interval if $\qquad$
$\qquad$
$\qquad$ .

## II. The First Derivative Test (Pages 181-185)

Let $c$ be a critical number of a function $f$ that is continuous on an open interval $I$ containing $c$. The First-Derivative Test states that if $f$ is differentiable on the interval (except possibly at $c$ ), then $f(c)$ can be classified as follows:

What you should learn
How to apply the First Derivative Test to find relative extrema of a function

1. If $f^{\prime}(x)$ changes from negative to positive at $c$, then $f$
has a $\qquad$ at $(c, f(c))$.
2. If $f^{\prime}(x)$ changes from positive to negative at $c$, then $f$ has a $\qquad$ at $(c, f(c))$.
3. If $f^{\prime}(x)$ is positive on both sides of $c$ or negative on both sides of $c$, then $f(c)$ is $\qquad$ .

In your own words, describe how to find the relative extrema of a function $f$.

Example 2: Find all relative extrema of the function

$$
f(x)=x^{3}-7 x^{2}-38 x+240
$$

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 3.4 Concavity and the Second Derivative Test

Objective: In this lesson you learned how to use the second derivative to determine whether the graph of a function is concave upward or downward.

Course Number Instructor

Date

## Important Vocabulary Define each term or concept.

Concave upward

Concave downward

Point of inflection
I. Concavity (Pages 190-192)

Let $f$ be differentiable on an open interval $I$. If the graph of $f$ is concave upward, then the graph of $f$ lies $\qquad$ all of its tangent lines on $I$.

## What you should learn

How to determine intervals on which a function is concave upward or concave downward

Let $f$ be differentiable on an open interval $I$. If the graph of $f$ is
concave downward, then the graph of $f$ lies $\qquad$ all
of its tangent lines on $I$.

As a test for concavity, let $f$ be a function whose second derivative exists on an open interval $I$.

1. If $f^{\prime \prime}(x)>0$ for all $x$ in $I$, then the graph of $f$ is $\qquad$ in $I$.
2. If $f^{\prime \prime}(x)<0$ for all $x$ in $I$, then the graph of $f$ is $\qquad$
$\qquad$ in $I$.

In your own words, describe how to apply the Concavity Test.

Example 1: Describe the concavity of the function

$$
f(x)=1-3 x^{2}
$$

II. Points of Inflection (Pages 192-193)

To locate possible points of inflection, you can determine

## What you should learn

How to find any points of inflection of the graph of a function

State Theorem 3.8 for Points of Inflection.

Example 2: Find the points of inflection of

$$
f(x)=-\frac{1}{2} x^{4}+10 x^{3}-48 x^{2}+4
$$

The converse of Theorem 3.8 is $\qquad$ .

That is, it is possible for the second derivative to be 0 at a point that is $\qquad$ .

## III. The Second-Derivative Test (Page 194)

Let be a function such that $f^{\prime}(c)=0$ and the second derivative of $f$ exists on an open interval containing $c$. Then the SecondDerivative Test states:

## What you should learn

How to apply the Second Derivative Test to find relative extrema of a function
1.
2.

## Homework Assignment

Page(s)
Exercises

## Section 3.5 Limits at Infinity

Objective: In this lesson you learned how to find horizontal asymptotes of the graph of a function.

Course Number Instructor

Date

What you should learn How to determine (finite) limits at infinity

Let $L$ be a real number. The definition of limit at infinity states that

1. $\lim _{x \rightarrow \infty} f(x)=L$ means $\qquad$
$\qquad$
2. $\lim _{x \rightarrow-\infty} f(x)=L$ means $\qquad$
$\qquad$
$\qquad$
II. Horizontal Asymptotes (Pages 199-203)

The line $y=L$ is a $\qquad$ of the graph of $f$ if $\lim _{x \rightarrow-\infty} f(x)=L$ or $\lim _{x \rightarrow \infty} f(x)=L$.

Notice that from this definition, if follows that the graph of a function of $x$ can have at most $\qquad$ .

If $r$ is a positive rational number and $c$ is any real number, then $\lim _{x \rightarrow \infty} \frac{c}{x^{r}}=$ $\qquad$ Furthermore, if $x^{r}$ is defined when $x<0$, then $\lim _{x \rightarrow-\infty} \frac{c}{x^{r}}=$ $\qquad$ .

What you should learn How to determine the horizontal asymptotes, if any, of the graph of a function

Example 1: Find the limit: $\lim _{x \rightarrow \infty}\left(2+\frac{3}{x^{2}}\right)$

## If an indeterminate form

$\qquad$ is encountered
while finding a limit at infinity, you can resolve this problem by
$\qquad$

Complete the following guidelines for finding limits at $\pm \infty$ of rational functions.

1. $\qquad$
$\qquad$
$\qquad$ .
2. $\qquad$
$\qquad$
$\qquad$
$\qquad$
3. $\qquad$
$\qquad$
$\qquad$

Example 2: Find the limit: $\lim _{x \rightarrow \infty} \frac{x^{3}-1}{1-13 x+2 x^{2}-5 x^{3}}$

## III. Infinite Limits at Infinity (Page 204)

Many function do not approach a finite limit as $x$ increases (or

What you should learn
How to determine infinite limits at infinity
decreases) without bound. $\qquad$ are one type of function that does not have a finite limit at infinity.

Let $f$ be a function defined on the interval $(a, \infty)$. The definition
of infinite limits at infinity states that

1. $\lim _{x \rightarrow \infty} f(x)=\infty$ means $\qquad$
$\qquad$
$\qquad$ -.
2. $\lim _{x \rightarrow \infty} f(x)=-\infty$ means $\qquad$
$\qquad$
$\qquad$
$\qquad$ .

Example 3: Find the limit: $\lim \left(2 x^{2}-9 x+1\right)$.

## Additional notes

## Homework Assignment

Page(s)

Exercises

## Section 3.6 A Summary of Curve Sketching

Objective: In this lesson you learned how to graph a function using the techniques from Chapters $\mathrm{P}-3$.

Course Number Instructor Date

## I. Analyzing the Graph of a Function (Pages 209-214)

List some of the concepts that you have studied thus far that are useful in analyzing the graph of a function.

What you should learn How to analyze the graph of a function

List three guidelines for analyzing the graph of a function.
1.
2.
3.

The graph of a rational function (having no common factors and whose denominator is of degree 1 or greater) has a $\qquad$ if the degree of the numerator exceeds the degree of the denominator by exactly 1 .

To find the slant asymptote, $\qquad$
$\qquad$
$\qquad$ .

In general, a polynomial function of degree $n$ can have at most
$\qquad$ relative extrema, and at most
$\qquad$ points of inflection. Moreover, polynomial functions of even degree must have $\qquad$ relative extremum.


## Homework Assignment

Page(s)
Exercises

## Section 3.7 Optimization Problems

Objective: In this lesson you learned how to solve optimization problems.

Course Number Instructor Date
I. Applied Minimum and Maximum Problems (Pages 218-222)

What does "optimization problem" mean?

What you should learn How to solve applied minimum and maximum problems

In an optimization problem, the primary equation is one that

The feasible domain of a function consists of $\qquad$ .

A secondary equation is used to $\qquad$ -
$\qquad$ -

List the steps for solving optimization problems.
1.
2.
3.
4.
5.

## Additional notes



## Homework Assignment

Page(s)

Exercises

## Section 3.8 Newton's Method

Objective: In this lesson you learned how to use Newton's Method, an approximation technique, to solve problems.

Course Number Instructor

Date
I. Newton's Method (Pages 229-232)

Newton's Method is $\qquad$
$\qquad$
it uses $\qquad$ .

Let $f(c)=0$, where $f$ is differentiable on an open interval containing $c$. To use Newton's Method to approximate $c$, use the following steps.
1.
2.
3.

Each successive application of this procedure is called an
$\qquad$ -.

When the approximations given by Newton's Method approach a limit, the sequence $x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots$ is said to
$\qquad$ . Moreover, if the limit is $c$, it
can be shown that $c$ must be $\qquad$ .

Newton's Method does not always yield a convergent sequence.
One way it can fail to do so is if $\qquad$
or if $\qquad$ $-$

What you should learn How to approximate a zero of a function using Newton's Method

When the first situation is encountered, it can usually be overcome by $\qquad$ .

## Additional notes



## Homework Assignment

Page(s)
Exercises

## Section 3.9 Differentials

Objective: In this lesson you learned how to use approximation techniques to solve problems.

Course Number

Instructor

Date

Important Vocabulary
Define each term or concept.

## Differential of $\boldsymbol{x}$

## Differential of $\boldsymbol{y}$

I. Tangent Line Approximations (Page 235)

Consider a function $f$ that is differentiable at $c$. The equation for the tangent line at the point $(c, f(c))$ is given by , and is
called $\qquad$
$\qquad$ Because $c$ is a
constant, $y$ is a $\qquad$ of $x$. Moreover, by restricting the values of $x$ to be sufficiently close to $c$, the values of $y$ can be used as approximations (to any desired accuracy) of
$\qquad$ . In other words,
as $x \rightarrow c$, the limit of $y$ is $\qquad$ .

## II. Differentials (Page 236)

When the tangent line to the graph of $f$ at the point $(c, f(c))$ is used as an approximation of the graph of $f$, the quantity $x-c$ is called the $\qquad$ and is denoted by . When $\Delta x$ is small, the change in $y$ (denoted
by $\Delta y$ ) can be approximated as $\qquad$ -

For such an approximation, the quantity $\Delta x$ is traditionally denoted by $\qquad$ and is called the differential of $\boldsymbol{x}$.

The expression $f^{\prime}(x) d x$ is denoted by $\qquad$ , and is called the differential of $y$.

What you should learn How to understand the concept of a tangent line approximation

What you should learn How to compare the value of the differential, $d y$, with the actual change in $y, \Delta y$

In many types of applications, the differential of $y$ can be used as
$\qquad$ . That
is, $\Delta y \approx$ $\qquad$ or $\Delta y \approx$ $\qquad$ .

## III. Error Propagation (Page 237)

Physicists and engineers tend to make liberal use of the approximation of $\Delta y$ by $d y$. One way this occurs in practice is in the $\qquad$
$\qquad$ . For example, if you let $x$ represent the measured value of a variable and let $x+\Delta x$ represent the exact value, then $\Delta x$ is $\qquad$
$\qquad$ Finally if the measured value $x$ is used to compute another value $f(x)$, the difference between $f(x+\Delta x)$ and $f(x)$ is the $\qquad$
IV. Calculating Differentials (Pages 238-239)

Each of the differentiation rules that you studied in Chapter 2 can be written in $\qquad$ .

What you should learn How to find the differential of a function using differentiation formulas

Suppose $u$ and $v$ are differentiable functions of $x$. Then by the definition of differentials, you have
$d u=$ $\qquad$ and $d v=$ $\qquad$

Complete the following differential forms of common differentiation rules:

Constant Multiple Rule: $\qquad$
Sum or Difference Rule: $\qquad$
Product Rule: $\qquad$
Quotient Rule: $\qquad$

## Homework Assignment

Page(s)
Exercises

## Chapter 4 Integration

Objective: In this lesson you learned how to evaluate indefinite integrals using basic integration rules.

Define each term or concept.

## Antiderivative

I. Antiderivatives (Pages 248-249)

If $F$ is an antiderivative of $f$ on an interval $I$, then $G$ is an antiderivative of $f$ on the interval $I$ if and only if $G$ is of the form
$\qquad$ , for all $x$ in $I$ where $C$ is a constant.

The entire family of antiderivatives of a function can be represented by $\qquad$
$\qquad$ The constant $C$ is called
the $\qquad$ The family of functions
represented by $G$ is the $\qquad$ .

A differential equation in $x$ and $y$ is an equation that $\qquad$ .

Give an example of a differential equation and its general solution.

## II. Notation for Antiderivatives (Page 249)

The operation of finding all solutions of the equation $d y=f(x) d x$ is called $\qquad$ and is denoted by the symbol $\int$, which is called an $\qquad$ .

The symbol $\int f(x) d x$ is the $\qquad$ -.

## What you should learn

How to write the general solution of a differential equation

## What you should learn

How to use indefinite integral notation for antiderivatives

Use the terms antiderivative, constant of integration, differential, integral sign, and integrand to label the following notation:

$$
\int f(x) d x=F(x)+C
$$

The differential in the indefinite integral identifies $\qquad$
$\qquad$ -

The notation $\int f(x) d x=F(x)+C$, where $C$ is an arbitrary constant, means that $F$ is $\qquad$ .
III. Basic Integration Rules (Pages 250-252)

Complete the following basic integration rules, which follow from differentiation formulas.

What you should learn
How to use basic integration rules to find antiderivatives

1. $\int k d x=$ $\qquad$ .
2. $\int k f(x) d x=$ $\qquad$
3. $\int[f(x)+g(x)] d x=$ $\qquad$
4. $\int[f(x)-g(x)] d x=$ $\qquad$
5. $\qquad$ $=\frac{x^{n+1}}{n+1}+C, \quad n \neq-1$
6. $\int 0 d x=$ $\qquad$
7. $\int \cos x d x=$ $\qquad$
8. $\int \sin x d x=$ $\qquad$
9. $\int \sec ^{2} x d x=$ $\qquad$
10. $\int \sec x \tan x d x=$ $\qquad$
11. $\int \csc ^{2} x d x=$ $\qquad$
12. $\int \csc x \cot x d x=$ $\qquad$

Example 1: Find $\int-3 d x$.

Example 2: Find $\int 2 x^{2} d x$.

Example 3: Find $\int(1-2 x) d x$.

## IV. Initial Conditions and Particular Solutions (Pages 253-255)

The equation $y=\int f(x) d x$ has many solution, each differing

What you should learn How to find a particular solution of a differential equation
from the others $\qquad$ . This means that the graphs of any two antiderivatives of $f$ are $\qquad$
$\qquad$

In many applications, you are given enough information to determine a $\qquad$ To do this, you need only know the value of $y=F(x)$ for one value of $x$, called an $\qquad$ -.

Example 4: Solve the differential equation $\frac{d C}{d x}=-0.2 x+40$, where $C(180)=89.90$.

## Homework Assignment

Page(s)

Exercises

## Section 4.2 Area

Objective: In this lesson you learned how to evaluate a sum and approximate the area of a plane region.

Course Number

Instructor

Date
I. Sigma Notation (Pages 259-260)

The sum of $n$ terms $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is written as
$\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}$, where $i$ is the $\qquad$ , $a_{i}$ is the $\qquad$
and $n$ and 1 are the $\qquad$ .

Complete the following properties of summation which are derived using the associative and commutative properties of addition and the distributive property of addition over multiplication.
$\sum_{i=1}^{n} k a_{i}=$ $\qquad$
$\sum_{i=1}^{n}\left(a_{i} \pm b_{i}\right)=$ $\qquad$

Now complete the following summation formulas.

1. $\sum_{i=1}^{n} c=$ $\qquad$
2. $\sum_{i=1}^{n} i=$
3. $\sum_{i=1}^{n} i^{2}=$ $\qquad$
4. $\sum_{i=1}^{n} i^{3}=$ $\qquad$

What you should learn
How to use sigma notation to write and evaluate a sum

## II. Area (Page 261)

In your own words, explain the exhaustion method that the ancient Greeks used to determine formulas for the areas of general regions.
III. Area of a Plane Region (Page 262)

Describe how to approximate the area of a plane region.

## IV. Upper and Lower Sums (Pages 263-267)

Consider a plane region bounded above by the graph of a nonnegative, continuous function $y=f(x)$. The region is bounded below by the $\qquad$ , and the left and right boundaries of the region are the vertical lines $x=a$ and $x=b$.

To approximate the area of the region, begin by $\qquad$ , each of width
$\qquad$ . Because $f$ is continuous, the

Extreme Value Theorem guarantees the existence of a
$\qquad$ in
each subinterval. The value $f\left(m_{i}\right)$ is $\qquad$
$\qquad$ and the value of $f\left(M_{i}\right)$
is $\qquad$ .

An inscribed rectangle $\qquad$ the $i$ th subregion and a circumscribed rectangle $\qquad$ the
$i$ th subregion. The height of the $i$ th inscribed rectangle is
$\qquad$ and the height of the $i$ th circumscribed
rectangle is $\qquad$ . For each $i$, the area of the
inscribed rectangle is $\qquad$ the area
of the circumscribed rectangle. The sum of the areas of the inscribed rectangles is called $\qquad$ , and the sum of the areas of the circumscribed rectangles is called
$\qquad$ -.

$$
\begin{aligned}
& =s(n)=\sum_{i=1}^{n} f\left(m_{i}\right) \Delta x \\
& =S(n)=\sum_{i=1}^{n} f\left(M_{i}\right) \Delta x
\end{aligned}
$$

The actual area of the region lies between $\qquad$
$\qquad$ -.

Let $f$ be continuous and nonnegative on the interval $[a, b]$. The limits as $n \rightarrow \infty$ of both the lower and upper sums exist and are
$\qquad$ . That is,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} s(n) & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(m_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(M_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} S(n)
\end{aligned}
$$

where $\Delta x=(b-a) / n$ and $f\left(m_{i}\right)$ and $f\left(M_{i}\right)$ are the minimum and maximum values of $f$ on the subinterval.

## Definition of the Area of a Region in the Plane

Let $f$ be continuous and nonnegative on the interval $[a, b]$. The area of the region bounded by the graph of $f$, the $x$-axis, and the vertical lines $x=a$ and $x=b$ is

$$
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \longrightarrow, x_{i-1} \leq c_{i} \leq x_{i}
$$

where $\Delta x=(b-a) / n$.

## Homework Assignment

Page(s)
Exercises

## Section 4.3 Riemann Sums and Definite Integrals

Objective: In this lesson you learned how to evaluate a definite integral using a limit.

Course Number Instructor

Date
I. Riemann Sums (Pages 271-272)

Let $f$ be defined on the closed interval $[a, b]$, and let $\Delta$ be a partition of $[a, b]$ given by $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b$, where $\Delta x_{i}$ is the width of the $i$ th subinterval. If $c_{i}$ is any point in the $i$ th subinterval $\left[x_{i-1}, x_{i}\right]$, then the sum $\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}$,
$x_{i-1} \leq c_{i} \leq x_{i}$, is called a $\qquad$ of $f$ for
the partition $\Delta$.

The width of the largest subinterval of a partition $\Delta$ is the of the partition and is denoted by
$\qquad$ oted by
$\qquad$ . If every subinterval is of equal width,
the partition is $\qquad$ and the norm is denoted
by $\|\Delta\|=\Delta x=\frac{b-a}{n}$. For a general partition, the norm is related to the number of subintervals of $[a, b]$ in the following way:
$\qquad$ . So the number of
subintervals in a partition approaches infinity as $\qquad$ .

What you should learn
How to understand the definition of a Riemann sum
II. Definite Integrals (Pages 273-275)

If $f$ is defined on the closed interval $[a, b]$ and the limit of
Riemann sums over partitions $\Delta$

$$
\lim _{\| \Delta \rightarrow 0 \mid} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

exists, then $f$ is said to be $\qquad$ and
the limit is denoted by $\lim _{|\Delta \rightarrow 0|} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x$. This limit is called the $\qquad$ . The
number $a$ is $\qquad$ , and
the number $b$ is $\qquad$ -.

It is important to see that, although the notation is similar, definite integrals and indefinite integrals are different concepts: a definite integrals is $\qquad$ , where an indefinite integral is $\qquad$ -

If a function $f$ is continuous on the closed interval $[a, b]$, then $f$ is
$\qquad$ on $[a, b]$.

Example 1: Evaluate the definite integral $\int_{-1}^{3}(2-x) d x$.

If $f$ is continuous and nonnegative on the closed interval $[a, b]$, then the area of the region bounded by the graph of $f$, the $x$-axis, and the vertical lines $x=a$ and $x=b$ is given by

Area $=\int$

## What you should learn

How to evaluate a definite integral using limits
III. Properties of Definite Integrals (Pages 276-278)

If $f$ is defined at $x=a$, then we define $\int_{a}^{a} f(x) d x=$

What you should learn
How to evaluate a definite integral using properties of definite integrals

If $f$ is integrable on $[a, b]$, then we define $\int_{b}^{a} f(x) d x=$ $\qquad$ .

If $f$ is integrable on the three closed intervals determined by $a, b$, and $c$, then
$\int_{a}^{b} f(x) d x=$ $\qquad$ .

If $f$ and $g$ are integrable on $[a, b]$ and $k$ is a constant, then the function $k f$ is integrable on $[a, b]$ and $\int_{a}^{b} k f(x) d x=$ $\qquad$

If $f$ and $g$ are integrable on $[a, b]$ and $k$ is a constant, then the function $f \pm g$ is integrable on $[a, b]$ and $\int_{a}^{b}[f(x) \pm g(x)] d x=$ $\qquad$

If $f$ and $g$ are continuous on the closed interval $[a, b]$ and $0 \leq f(x) \leq g(x)$ for $a \leq x \leq b$, the area of the region bounded by the graph of $f$ and the $x$-axis (between $a$ and $b$ ) must be
$\qquad$ . In addition, this area must be
$\qquad$ the area of the
region bounded by the graph of $g$ and the $x$-axis between $a$ and $b$.

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 4.4 The Fundamental Theorem of Calculus

Objective: In this lesson you learned how to evaluate a definite integral using the Fundamental Theorem of Calculus.

Course Number
Instructor
Date
I. The Fundamental Theorem of Calculus (Pages 282-284)

Informally, the Fundamental Theorem of Calculus states that
$\qquad$
$\qquad$
$\qquad$

The Fundamental Theorem of Calculus states that if $f$ is
continuous on the closed interval $[a, b]$ and $F$ is an antiderivative of $f$ on the interval $[a, b]$, then $\int_{a}^{b} f(x) d x=$ $\qquad$ .

Guidelines for Using the Fundamental Theorem of Calculus

1. Provided you can find an antiderivative of $f$, you now have a way to evaluate a definite integral without $\qquad$ .
2. When applying the Fundamental Theorem, the following notation is convenient. $\left.\int_{a}^{b} f(x) d x=F(x)\right]_{a}^{b}=$ $\qquad$ .
3. When using the Fundamental Theorem of Calculus, it is not necessary to include a $\qquad$ .

Example 1: Find $\int_{-2}^{2}\left(4-x^{2}\right) d x$.

Example 2: Find the area of the region bounded by the $x$-axis and the graph of $f(x)=2+e^{x}$ for $0 \leq x \leq 6$.
II. The Mean Value Theorem for Integrals (Page 285)

The Mean Value Theorem for Integrals states that if $f$ is continuous on the closed interval $[a, b]$, then there exists a number $c$ in the closed interval $[a, b]$ such that $\int_{a}^{b} f(x) d x=$

The Mean Value Theorem for Integrals does not specify how to determine $c$. It merely guarantees $\qquad$ -

## III. Average Value of a Function (Pages 286-287)

If $f$ is integrable on the closed interval $[a, b]$, then the average value of $f$ on the interval is

Average value of $f$ on $[a, b]=\square \int$

Example 3: Find the average value of $f(x)=0.24 x^{2}+4$ on [0, 10].

## IV. The Second Fundamental Theorem of Calculus (Pages 288-290)

The Second Fundamental Theorem of Calculus states that if $f$ is continuous on an open interval $I$ containing $a$, then, for every $x$ in the interval, $\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=$ $\qquad$ .

## What you should learn

How to understand and use the Mean Value Theorem for Integrals

What you should learn
How to find the average value of a function over a closed interval

What you should learn
How to understand and use the Second Fundamental Theorem of Calculus

## V. Net Change Theorem (Pages 291-292)

The Net Change Theorem states that the definite integral of the rate of change of a quantity $F^{\prime}(x)$ gives the total change, or net change, in that quantity of the interval $[a, b]$.

What you should learn How to understand and use the Net Change Theorem

$$
\int_{a}^{b} F^{\prime}(x) d x=
$$

$\qquad$

Example 4: Liquid flows out of a tank at a rate of $40-2 t$ gallons per minute, where $0 \leq t \leq 20$. Find the volume of liquid that flows out of the tank during the first 5 minutes.

## Additional notes

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 4.5 Integration by Substitution

Objective: In this lesson you learned how to evaluate different types of definite and indefinite integrals using a variety of methods.

Course Number Instructor Date
I. Pattern Recognition (Pages 297-299)

The role of substitution in integration is comparable to the role of $\qquad$ in differentiation.

What you should learn How to use pattern recognition to find an indefinite integral

## Antidifferentiation of a Composite Function

Let $g$ be a function whose range is an interval $I$, and let $f$ be a function that is continuous on $I$. If $g$ is differentiable on its domain and $F$ is an antiderivative of $f$ on $I$, then
$\int f(g(x)) g^{\prime}(x) d x=\ldots$. Letting $u=g(x)$ gives $d u=g^{\prime}(x) d x$ and $\int f(u) d u=$ $\qquad$ .

Example 1: Find $\int\left(2-3 x^{2}\right)^{3}(-6 x) d x$.

Many integrands contain the variable part of $g^{\prime}(x)$ but are missing a constant multiple. In such cases, you can $\qquad$ .

Example 2: Find $\int 6 x^{2}\left(4 x^{3}-1\right)^{2} d x$.
II. Change of Variables (Pages 300-301)

With a formal change of variables, you completely $\qquad$

What you should learn
How to use a change of variables to find an indefinite integral
$\qquad$ The change of variable technique uses the $\qquad$ notation for the differential. That is, if $u=g(x)$, then $d u=$ $\qquad$ , and the integral
takes the form $\int f(g(x)) g^{\prime}(x) d x=\int$

Example 3: Find $\int 6 x^{2}\left(4 x^{3}-1\right)^{2} d x$ using change of variables.

Complete the list of guidelines for making a change of variables.
1.
2.
3.
4.
5.
6.
III. The General Power Rule for Integration (Page 302)

One of the most common $u$-substitutions involves $\qquad$
What you should learn
How to use the General
Power Rule for Integration to find an indefinite integral
and is given a special name-the $\qquad$
$\qquad$ It states that if $g$ is a differentiable
function of $x$, then $\int$

Equivalently, if $u=g(x)$, then $\int$

Example 4: Find $\int\left(4 x^{3}-x^{2}\right)\left(12 x^{2}-2 x\right) d x$.

## IV. Change of Variables for Definite Integrals (Pages 303-304)

When using $u$-substitution with a definite integral, it is often

What you should learn How to use a change of variables to evaluate a definite integral convenient to $\qquad$ rather than to convert the antiderivative back to the variable $x$ and evaluate the original limits.

## Change of Variables for Definite Integrals

If the function $u=g(x)$ has a continuous derivative on the closed interval $[a, b]$ and $f$ is continuous on the range of $g$, then $\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int$ $\qquad$ .

Example 5: Find $\int_{0}^{4} 2 x\left(2 x^{2}-3\right)^{2} d x$.

## V. Integration of Even and Odd Functions (Page 305)

Occasionally, you can simplify the evaluation of a definite integral over an interval that is symmetric about the $y$-axis or about the origin by $\qquad$ .

Let $f$ be integrable on the closed interval $[-a, a]$.
If $f$ is an___ function, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
If $f$ is an___ function, then $\int_{-a}^{a} f(x) d x=0$.

## Homework Assignment

Page(s)
Exercises

## Section 4.6 Numerical Integration

Objective: In this lesson you learned how to approximate a definite integral using the Trapezoidal Rule and Simpson's Rule.

Course Number

Instructor

Date
I. The Trapezoidal Rule (Pages 311-313)

In your own words, describe how the Trapezoidal Rule approximates the area under the graph of a continuous function $f$.

What you should learn How to approximate a definite integral using the Trapezoidal Rule

The Trapezoidal Rule states that if $f$ is continuous on $[a, b]$, then $\int_{a}^{b} f(x) d x \approx$ $\qquad$
Moreover, as $n \rightarrow \infty$, the right-hand side approaches $\int_{a}^{b} f(x) d x$.
The approximation of the area under a curve given by the Trapezoidal Rule tends to become $\qquad$ as $n$ increases.

Example 1: Use the Trapezoidal Rule to approximate
$\int_{1}^{2} \frac{x}{3-x} d x$ using $n=4$. Round your answer to three decimal places.
II. Simpson's Rule (Pages 313-314)

In your own words, describe how Simpson's Rule approximates the area under the graph of a continuous function $f$.

What you should learn
How to approximate a definite integral using Simpson's Rule

For Simpson's Rule, what restriction is there on the value of $n$ ?

Simpson's Rule states that if $f$ is continuous on $[a, b]$ and $n$ is even, then

$$
\int_{a}^{b} f(x) d x \approx
$$

$\qquad$
Moreover, as $n \rightarrow \infty$, the right-hand side approaches $\int_{a}^{b} f(x) d x$.
Example 2: Use Simpson's Rule to approximate $\int_{1}^{2} \frac{x}{3-x} d x$ using $n=4$. Round your answer to three decimal places.

## III. Error Analysis (Page 315)

For $\qquad$ Rule, the error $E$ in approximating
$\int_{a}^{b} f(x) d x$ is given as $|E| \leq \frac{(b-a)^{5}}{180 n^{4}}\left[\max \left|f^{(4)}(x)\right|\right], a \leq x \leq b$.

What you should learn
How to analyze errors in the Trapezoidal Rule and Simpson's Rule

For $\qquad$ Rule, the error $E$ in approximating
$\int_{a}^{b} f(x) d x$ is given as $|E| \leq \frac{(b-a)^{3}}{12 n^{2}}\left[\max \left|f^{\prime \prime}(x)\right|\right], a \leq x \leq b$.

## Homework Assignment

Page(s)
Exercises

I. The Natural Logarithmic Function (Pages 324-326)

The domain of the natural logarithmic function is $\qquad$ -.

What you should learn How to develop and use properties of the natural logarithmic function

The value of $\ln x$ is positive for $\qquad$ and negative
for $\qquad$ Moreover, $\ln (1)=$ $\qquad$ ,
because the upper and lower limits of integration are equal when $\qquad$ .

The natural logarithmic function has the following properties:
1.
2.
3.

If a and b are positive numbers and n is rational, then the following properties are true:

1. $\ln (1)=$ $\qquad$ .
2. $\ln (a b)=$ $\qquad$ .
3. $\ln \left(a^{n}\right)=$ $\qquad$ .
4. $\ln \left(\frac{a}{b}\right)=$ $\qquad$ .
Example 1: Expand the logarithmic expression $\ln \frac{x y^{4}}{2}$.
II. The Number $\boldsymbol{e}$ (Page 327)

The base for the natural logarithm is defined using the fact that the natural logarithmic function is continuous, is one-to-one, and has a range of $(-\infty, \infty)$. So, there must a unique real number $x$ such that $\qquad$ . This number is denoted by the letter $\qquad$ , which has the decimal approximation $\qquad$ -.

## III. The Derivative of the Natural Logarithmic Function (Pages 328-330)

Let $u$ be a differentiable function of $x$. Complete the following rules of differentiation for the natural logarithmic function:

## What you should learn

How to understand the definition of the number $e$

What you should learn
How to find derivatives of functions involving the natural logarithmic function
$\frac{d}{d x}[\ln x]=$ $\qquad$ , $x>0$
$\frac{d}{d x}[\ln u]=$ $\qquad$ , $u>0$

Example 2: Find the derivative of $f(x)=x^{2} \ln x$.

If $u$ is a differentiable function of $x$ such that $u \neq 0$, then $\frac{d}{d x}[\ln |u|]=$ $\qquad$ In other words, functions of
the form $y=\ln |u|$ can be differentiated as if $\qquad$ —.

Homework Assignment
Page(s)
Exercises

Section 5.2 The Natural Logarithmic Function: Integration
Objective: In this lesson you learned how to find the antiderivative of the natural logarithmic function.

Course Number

Instructor

Date

## I. Log Rule for Integration (Pages 334-337)

Let $u$ be a differentiable function of $x$.
$\int \frac{1}{x} d x=$ $\qquad$

What you should learn How to use the Log Rule for Integration to integrate a rational function
$\int \frac{u^{\prime}}{u} d x=\int \frac{1}{u} d u=$ $\qquad$

Example 1: Find $\int\left(1-\frac{1}{x}\right) d x$.

Example 2: Find $\int \frac{x^{2}}{3-x^{3}} d x$.

Example 3: Find $\int \frac{x^{2}-4 x+1}{x} d x$.

If a rational function has a numerator of degree greater than
division may reveal a form to which you can apply the Log Rule.

## Guidelines for Integration

1. 
2. 
3. 
4. 

II. Integrals of Trigonometric Functions (Pages 338-339)
$\qquad$

What you should learn
How to integrate trigonometric functions
$\int \cos u d u=$ $\qquad$
$\int \tan u d u=$ $\qquad$
$\int \cot u d u=$ $\qquad$
$\int \sec u d u=$
$\int \csc u d u=$ $\qquad$

Example 4: Find $\int \csc 5 x d x$

## Homework Assignment

Page(s)
Exercises

## Section 5.3 Inverse Functions

Objective: In this lesson you learned how to determine whether a function has an inverse function.

Course Number Instructor

Date

Important Vocabulary Define each term or concept.
Inverse function

Horizontal Line Test
I. Inverse Functions (Pages 343-344)

For a function $f$ that is represented by a set of ordered pairs, you can form the inverse function of $f$ by $\qquad$

What you should learn
How to verify that one function is the inverse function of another function

For a function $f$ and its inverse $f^{-1}$, the domain of $f$ is equal to , and the range of $f$ is equal to
$\qquad$

State three important observations about inverse functions.
1.
2.
3.

To verify that two functions, $f$ and $g$, are inverse functions of each other, . . .

Example 1: Verify that the functions $f(x)=2 x-3$ and $g(x)=\frac{x+3}{2}$ are inverse functions of each other.

The graph of $f^{-1}$ is a reflection of the graph of $f$ in the line
$\qquad$

The Reflective Property of Inverse Functions states that the graph of $f$ contains the point $(a, b)$ if and only if $\qquad$
II. Existence of an Inverse Function (Pages 345-347)

State two reasons why the horizontal line test is valid.
1.

## What you should learn

How to determine whether a function has an inverse function

Example 2: Does the graph of the function shown below have an inverse function? Explain.


Complete the following guidelines for finding an inverse function.
1)
2)
3)
4)
5)

Example 3: Find the inverse (if it exists) of $f(x)=4 x-5$.
III. Derivative of an Inverse Function (Pages 347-348)

Let $f$ be a function whose domain is an interval $I$. If $f$ has an inverse function, then the following statements are true.
1.
2.
3.
4.

Let $f$ be a function that is differentiable on an interval $I$. If $f$ has an inverse function $g$, then $g$ is $\qquad$

Moreover, $g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}, \quad f^{\prime}(g(x)) \neq 0$.

This last theorem can be interpreted to mean that $\qquad$ -
$\qquad$
.

What you should learn How to find the derivative of an inverse function

## Additional notes

Homework Assignment
Page(s)
Exercises

## Section 5.4 Exponential Functions: Differentiation and Integration

Objective: In this lesson you learned about the properties of the

Course Number Instructor

Date natural exponential function and how to find the derivative and antiderivative of the natural exponential function.
I. The Natural Exponential Function (Pages 352-353)

The inverse function of the natural logarithmic function
$f(x)=\ln x$ is called the $\qquad$
What you should learn How to develop properties of the natural exponential function
$\qquad$ and is denoted by $f^{-1}(x)=e^{x}$. That is, $y=e^{x}$ if and only if $\qquad$ -.

Example 1: Solve $e^{x-2}-7=59$ for $x$. Round to three decimal places.

Example 2: Solve $4 \ln 5 x=28$ for $x$. Round to three decimal places.

Complete each of the following operations with exponential functions.

1. $e^{a} e^{b}=$ $\qquad$ .
2. $\frac{e^{a}}{e^{b}}=$ $\qquad$ -

List four properties of the natural exponential function.
1.
2.
3.
4.
II. Derivatives of Exponential Functions (Pages 354-355)

Let $u$ be a differentiable function of $x$. Complete the following rules of differentiation for the natural exponential function:

## What you should learn

How to differentiate natural exponential functions
$\frac{d}{d x}\left[e^{x}\right]=$ $\qquad$ -.
$\frac{d}{d x}\left[e^{u}\right]=$ $\qquad$

Example 3: Find the derivative of $f(x)=x^{2} e^{x}$.
III. Integrals of Exponential Functions (Pages 356-357)

Let $u$ be a differentiable function of $x$.

What you should learn
How to integrate natural exponential functions

$$
\int e^{x} d x=
$$

$\qquad$
$\int e^{u} d u=$ $\qquad$

Example 4: Find $\int e^{2 x} d x$.

## Homework Assignment

Page(s)
Exercises

## Section 5.5 Bases Other Than e and Applications

Objective: In this lesson you learned about the properties, derivatives, and antiderivatives of logarithmic and exponential functions that have bases other than $e$.
I. Bases Other than $\boldsymbol{e}$ (Pages 362-363)

If $a$ is a positive real number $(a \neq 1)$ and $x$ is any real number, then the exponential function to the base $\boldsymbol{a}$ is denoted by $a^{x}$

Course Number

Instructor

Date

What you should learn How to define exponential functions that have bases other than $e$ and is defined by $\qquad$ . If $a=1$, then $y=1^{x}=1$ is a $\qquad$ .

In a situation of radioactive decay, half-life is $\qquad$

If $a$ is a positive real number $(a \neq 1)$ and $x$ is any positive real number, then the logarithmic function to the base $\boldsymbol{a}$ is denoted by $\log _{a} x$ and is defined by $\log _{a} x=$ $\qquad$ _.

Complete the following properties of logarithmic functions to the base $a$.

1) $\log _{a} 1=$ $\qquad$
2) $\log _{a}(x y)=$ $\qquad$
3. $\log _{a} x^{n}=$ $\qquad$
4. $\log _{a} \frac{x}{y}=$ $\qquad$
State the Properties of Inverse Functions

The logarithmic function to the base 10 is called the $\qquad$
$\qquad$ .

Example 1: (a) Solve $\log _{8} x=\frac{1}{3}$ for $x$.
(b) Solve $5^{x}=0.04$ for $x$.
II. Differentiation and Integration (Pages 364-365)

To differentiate exponential and logarithmic functions to other bases, you have three options:

## What you should learn How to differentiate and integrate exponential functions that have bases other than $e$

1. 
2. 
3. 

Let $a$ be a positive real number $(a \neq 1)$ and let $u$ be a
differentiable function of $x$. Complete the following formulas for the derivatives for bases other than $e$.
$\frac{d}{d x}\left[a^{x}\right]=$ $\qquad$ .
$\frac{d}{d x}\left[a^{u}\right]=$ $\qquad$ .
$\frac{d}{d x}\left[\log _{a} x\right]=$ $\qquad$
$\frac{d}{d x}\left[\log _{a} u\right]=$ $\qquad$ .

Occasionally, an integrand involves an exponential function to a base other than $e$. When this occurs, there are two options:
(1) $\qquad$ or (2) integrate directly using the
integration formula $\int a^{x} d x=$ $\qquad$ -.

Let $n$ be any real number and let $u$ be a differentiable function of $x$. The Power Rule for Real Exponents gives.
$\frac{d}{d x}\left[x^{n}\right]=$ $\qquad$ -
$\frac{d}{d x}\left[u^{n}\right]=$ $\qquad$
III. Applications of Exponential Functions (Pages 366-367)

Complete the following limit statement:
$\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\lim _{x \rightarrow \infty}\left(\frac{x+1}{x}\right)^{x}=$ $\qquad$ .

What you should learn How to use exponential functions to model compound interest and exponential growth

Let $P$ be the amount deposited, $t$ the number of years, $A$ the balance after $t$ years, and $r$ the annual interest rate (in decimal form), and $n$ the number of compounding per year. Complete the following compound interest formulas:

Compounded $n$ times per year: $\qquad$
Compounded continuously: $\qquad$
Example 2: Find the amount in an account after 10 years if $\$ 6000$ is invested at an interest rate of $7 \%$,
(a) compounded monthly.
(b) compounded continuously.

## Additional notes

## Homework Assignment

Page(s)
Exercises

| Section 5.6 | Inverse Trigonometric Functions: Differentiation | Course Number |
| :--- | :--- | :--- |
| Objective: | In this lesson you learned about the properties of inverse <br> trigonometric functions and how to find derivatives of <br> inverse trigonometric functions. | Instructor |

I. Inverse Trigonometric Functions (Pages 373-375)

None of the six basic trigonometric functions has $\qquad$
$\qquad$ . This is true because all six trigonometric functions are $\qquad$

What you should learn How to develop properties of the six inverse trigonometric functions

For each of the following definitions of inverse trigonometric functions, supply the required restricted domains and ranges.

Domain Range
$y=\arcsin x$ iff $\sin y=x$ $\qquad$
$y=\arccos x$ iff $\cos y=x$
$y=\arctan x$ iff $\tan y=x$
$y=\operatorname{arccot} x$ iff $\cot y=x$
$y=\operatorname{arcsec} x$ iff $\sec y=x$
$y=\operatorname{arccsc} x$ iff $\csc y=x$
An alternative notation for the inverse sine function is
$\qquad$ -.

Example 1: Evaluate the function: $\arcsin (-1)$.

Example 2: Evaluate the function: $\arccos \frac{1}{2}$.

Example 3: Evaluate the function: $\operatorname{arcos}(0.85)$.

State the Inverse Property for the Sine function.

State the Inverse Property for the Cosine function.

State the Inverse Property for the Tangent function.

## II. Derivatives of Inverse Trigonometric Functions

 (Pages 376-377)Let $u$ be a differentiable function of $x$.

What you should learn
How to differentiate an inverse trigonometric function
$\frac{d}{d x}[\arcsin u]=\frac{}{\sqrt{ }}$
$\frac{d}{d x}[\arccos u]=\frac{}{\sqrt{ }}$
$\frac{d}{d x}[\arctan u]=$ $\qquad$
$\frac{d}{d x}[\operatorname{arccot} u]=$
$\frac{d}{d x}[\operatorname{arcsec} u]=$ $\qquad$
$\frac{d}{d x}[\operatorname{arccsc} u]=$ $\qquad$

## Homework Assignment

Page(s)

Exercises

## Section 5.7 Inverse Trigonometric Functions: Integration

Objective: In this lesson you learned how to find antiderivatives of inverse trigonometric functions.

Course Number

Instructor

Date
I. Integrals Involving Inverse Trigonometric Functions (Pages 382-383)

Let $u$ be a differentiable function of $x$, and let $a>0$.
$\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=$ $\qquad$ .
$\int \frac{d u}{a^{2}+u^{2}}=$ $\qquad$ .
$\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=$ $\qquad$ .

Example 1: $\int \frac{6 x d x}{4+9 x^{4}}$
II. Completing the Square (Pages 383-384)

Completing the square helps when $\qquad$ -

What you should learn How to integrate functions whose antiderivatives involve inverse trigonometric functions

## What you should learn

How to use the method of completing the square to integrate a function

Example 2: Complete the square for the polynomial:

$$
x^{2}+6 x+3
$$

Example 3: Complete the square for the polynomial:

$$
2 x^{2}+16 x
$$

III. Review of Basic Integration Rules (Pages 385-386)

Complete the following selected basic integration rules.
$\int \frac{u^{\prime}}{u} d x=\int \frac{1}{u} d u=$
$\int d u=$ $\qquad$
$\int \cot u d u=$ $\qquad$
$\int \frac{d u}{a^{2}+u^{2}}=$ $\qquad$
$\int \cos u d u=$ $\qquad$
$\int \sec ^{2} u d u=$ $\qquad$

## Homework Assignment

Page(s)
Exercises

## Section 5.8 Hyperbolic Functions

Objective: In this lesson you learned about the properties of hyperbolic functions and how to find derivatives and antiderivatives of hyperbolic functions.

Course Number Instructor

Date

What you should learn How to develop properties of hyperbolic functions
$\sinh x=$ $\qquad$ .
$\cosh x=$ $\qquad$ .
$\tanh x=$ $\qquad$ .
$\operatorname{csch} x=$ $\qquad$
$\operatorname{sech} x=$ $\qquad$ .
$\operatorname{coth} x=$ $\qquad$ .

Complete the following hyperbolic identities.
$\cosh ^{2} x-\sinh ^{2} x=$ $\qquad$ .
$\tanh ^{2} x+\operatorname{sech}^{2} x=$ $\qquad$ .
$\operatorname{coth}^{2} x-\operatorname{csch}^{2} x=$ $\qquad$ .
$\frac{-1+\cosh 2 x}{2}=$ $\qquad$ .
$\frac{1+\cosh 2 x}{2}=$ $\qquad$ -
$2 \sinh x \cosh x=$ $\qquad$ .
$\cosh ^{2} x+\sinh ^{2} x=$ $\qquad$ .
$\sinh (x+y)=$ $\qquad$ .
$\sinh (x-y)=$ $\qquad$ .
$\cosh (x+y)=$ $\qquad$ .
$\cosh (x-y)=$ $\qquad$ .

## II. Differentiation and Integration of Hyperbolic Functions

 (Pages 392-394)Let $u$ be a differentiable function of $x$. Complete each of the following rules of differentiation and integration.
$\frac{d}{d x}[\sinh u]=$ $\qquad$ .
$\frac{d}{d x}[\cosh u]=$ $\qquad$ .
$\frac{d}{d x}[\tanh u]=$ $\qquad$ .
$\frac{d}{d x}[\operatorname{coth} u]=$ $\qquad$ .
$\frac{d}{d x}[\operatorname{sech} u]=$ $\qquad$ .
$\frac{d}{d x}[\operatorname{csch} u]=$ $\qquad$ .
$\int \cosh u d u=$ $\qquad$
$\int \sinh u d u=$ $\qquad$ .
$\int \operatorname{sech}^{2} u d u=$ $\qquad$ -
$\int \operatorname{csch}^{2} u d u=$ $\qquad$ .
$\int \operatorname{sech} u \tanh u d u=$ $\qquad$ .
$\int \operatorname{csch} u \operatorname{coth} u d u=$ $\qquad$ .

What you should learn How to differentiate and integrate hyperbolic functions
III. Inverse Hyperbolic Functions (Pages 394-396)

State the inverse hyperbolic function given by each of the following definitions and give the domain for each.
Domain

What you should learn How to develop properties of inverse hyperbolic functions
$\ln \left(x+\sqrt{x^{2}+1}\right)=$ $\qquad$
$\qquad$
$\ln \left(x+\sqrt{x^{2}-1}\right)=$ $\qquad$
$\qquad$
$\frac{1}{2} \ln \frac{1+x}{1-x}=$ $\qquad$
$\qquad$ -.
$\frac{1}{2} \ln \frac{x+1}{x-1}=$ $\qquad$
$\qquad$
$\ln \frac{1+\sqrt{1-x^{2}}}{x}=$ $\qquad$ ,$\longrightarrow$
$\ln \left(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|}\right)=$ $\qquad$ ,

## IV. Differentiation and Integration of Inverse Hyperbolic Functions (Pages 396-397)

Let $u$ be a differentiable function of $x$. Complete each of the following rules of differentiation and integration.

What you should learn
How to differentiate and integrate functions involving inverse hyperbolic functions
$\frac{d}{d x}[\square]=\frac{u^{\prime}}{\sqrt{u^{2}+1}}$

$\frac{d}{d x}[\square]=\frac{u^{\prime}}{1-u^{2}}$
$\frac{d}{d x}[\square]=\frac{u^{\prime}}{1-u^{2}}$
$\frac{d}{d x}[\square]=\frac{-u^{\prime}}{u \sqrt{1-u^{2}}}$

$$
\frac{d}{d x}[-]=\frac{-u^{\prime}}{|u| \sqrt{1+u^{2}}}
$$

$\int \frac{d u}{\sqrt{u^{2} \pm a^{2}}}=$ $\qquad$
$\int \frac{d u}{a^{2}-u^{2}}=$ $\qquad$
$\int \frac{d u}{u \sqrt{a^{2} \pm u^{2}}}=$ $\qquad$

## Homework Assignment

Page(s)
Exercises

## Chapter 6 Differential Equations

## Section 6.1 Slope Fields and Euler's Method

Objective: In this lesson you learned how to sketch a slope field of a differential equation, and find a particular solution.
I. General and Particular Solutions (Pages 406-407)

Recall that a differential equation in $x$ and $y$ is an equation that _.

A function $y=f(x)$ is a solution of a differential equation if
$\qquad$

The general solution of a differential equation is $\qquad$ .

The order of a differential equation is determined by $\qquad$

Geometrically, the general solution of a first-order differential equation represents a family of curves known as $\qquad$
$\qquad$ , one for each value assigned to the arbitrary constant. Particular solutions of a differential equation are obtained from $\qquad$ that give the value of the dependent variable or one of its derivatives for a particular value of the independent variable.

Example 1: For the differential equation $y^{\prime \prime}-y^{\prime}-2 y=0$, verify that $y=C e^{2 x}$ is a solution, and find the particular solution determined by the initial condition $y=5$ when $x=0$.
II. Slope Fields (Pages 408-409)

Solving a differential equation analytically can be difficult or even impossible. However, there is a $\qquad$ you can use to learn a lot about the solution of a differential equation. Consider a differential equation of the

## What you should learn

How to use slope fields to approximate solutions of differential equations
form $y^{\prime}=F(x, y)$ where $F(x, y)$ is some expression in $x$ and $y$. At each point $(x, y)$ in the $x y$-plane where $F$ is defined, the differential equation determines the $\qquad$ of the solution at that point. If you draw a short line segment with slope $F(x, y)$ at selected points $(x, y)$ in the domain of $F$, then these line segments form a $\qquad$ , or a direction field for the differential equation $y^{\prime}=F(x, y)$. Each line segment has $\qquad$ as the solution curve through that point. A slope field shows $\qquad$ and can be
helpful in getting a visual perspective of the directions of the solutions of a differential equation.

A solution curve of a differential equation $y^{\prime}=F(x, y)$ is simply
III. Euler's Method (Page 410)

Euler's Method is $\qquad$

From the given information, you know that the graph of the solution passes through $\qquad$ and
has a slope of $\qquad$ at this point. This gives a
"starting point" for $\qquad$ .
From this starting point, you can proceed in the direction
$\qquad$ . Using a small step $h$,
move along the tangent line until you arrive at the point $\left(x_{1}, y_{1}\right)$
where $x_{1}=$ $\qquad$ and $y_{1}=$ $\qquad$ . If you think of $\left(x_{1}, y_{1}\right)$ as a new starting point, you can repeat the process to obtain $\qquad$ .

## What you should learn

How to use Euler's Method to approximate solutions of differential equations

## Homework Assignment

Page(s)
Exercises

## Section 6.2 Differential Equations: Growth and Decay

Objective: In this lesson you learned how to use an exponential function to model growth and decay.

Course Number

Instructor

Date
I. Differential Equations (Page 415)

The separation of variables strategy is to $\qquad$
$\qquad$ -.

Example 1: Find the general solution of $\frac{d y}{d x}=\frac{3 x^{2}-1}{2 y+5}$.
II. Growth and Decay Models (Pages 416-419)

In many applications, the rate of change of a variable $y$ is
$\qquad$ to the value of $y$. If $y$ is a function of time $t$, the proportion can be written as $\qquad$ -

What you should learn
How to use exponential functions to model growth and decay in applied problems

The Exponential Growth and Decay Model states that if $y$ is a differentiable function of $t$ such that $y>0$ and $y^{\prime}=k y$, for some constant $k$, then $\qquad$ where $C$ is the $\qquad$
$\qquad$ , and $k$ is the $\qquad$ .

Exponential growth occurs when $\qquad$ and exponential decay occurs when $\qquad$ .

Example 2: The rate of change of $y$ is proportional to $y$. When $t=0, y=5$. When $t=4, y=10$. What is the value of $y$ when $t=2$ ?

What you should learn How to use separation of variables to solve a simple differential equation

In a situation of radioactive decay, half-life is $\qquad$
$\qquad$
$\qquad$

Newton's Law of Cooling states that $\qquad$
$\qquad$
$\qquad$
.


## Homework Assignment

Page(s)
Exercises

## Section 6.3 Separation of Variables and the Logistic Equation

Objective: In this lesson you learned how to use separation of variables to solve a differential equation.
I. Separation of Variables (Pages 423-424)

Consider a differential equation that can be written in the form $M(x)+N(y) \frac{d y}{d x}=0$, where $M$ is a continuous function of $x$ alone and $N$ is a continuous function of $y$ alone. Such equations are said to be $\qquad$ , and the solution procedure is called $\qquad$
For this type of equation, all $x$ terms can be $\qquad$
$\qquad$ , all $y$ terms can be $\qquad$ , and a solution can be obtained by integration.

Give an example of a separable differential equation.

Example 1: Solve the differential equation $2 y y^{\prime}=e^{x}$ subject to the initial condition $y=3$ when $x=0$.

## II. Homogeneous Differential Equations (Pages 425-426)

Some differential equations that are not separable in $x$ and $y$ can be made separable by $\qquad$ This is true for differential equations of the form $y^{\prime}=f(x, y)$ where $f$ is a $\qquad$ . The
function given by $f(x, y)$ is homogeneous of degree $\boldsymbol{n}$ if
where $n$ is an integer.

Course Number Instructor

Date

What you should learn How to recognize and solve differential equations that can be solved by separation of variables

## What you should learn

 How to recognize and solve homogeneous differential equationsA homogeneous differential equation is an equation of the
form $\qquad$ , where $M$ and
$N$ are homogenous functions of the same degree.

Example 2: State whether the function
$f(x, y)=6 x y^{3}+4 x^{4}-x^{2} y^{2}$ is homogeneous. If so, what is its degree?

If $M(x, y) d x+N(x, y) d y=0$ is homogeneous, then it can be transformed into a differential equation whose variables are separable by the substitution $\qquad$ , where $v$ is a differentiable function of $x$.

## III. Applications (Pages 427-428)

Example 3: A new legal requirement is being publicized through a public awareness campaign to a population of 1 million citizens. The rate at which the population hears about the requirement is assumed to be proportional to the number of people who are not yet aware of the requirement. By the end of 1 year, half of the population has heard of the requirement. How many will have heard of it by the end of 2 years?

## What you should learn

How to use differential equations to model and solve applied problems

A common problem in electrostatics, thermodynamics, and hydrodynamics involves finding a family of curves, each of which is $\qquad$ to all members of a given family of curves. If one family of curves intersects another family of curves at right angles, then the two families are said to
be $\qquad$ , and each curve in one
of the families is called an $\qquad$ of the other family.
IV. Logistic Differential Equation (Pages 429-430)

Exponential growth is unlimited, but when describing a population, there often exists some upper limit $L$ past which

What you should learn
How to solve and analyze logistic differential equations growth cannot occur. This upper limit $L$ is called the $\qquad$ , which is the maximum population $y(t)$ that can be sustained or supported as time $t$ increases. A model that is often used for this type of growth is the $\qquad$

$$
\frac{d y}{d t}=k y\left(1-\frac{y}{L}\right), \text { where } k \text { and } L
$$

are positive constants. A population that satisfies this equation does not grow without bound, but approaches $\qquad$ as $t$ increases.

The general solution of the logistic differential equation is of the form $y=\square$.

## Additional notes




## Homework Assignment

Page(s)
Exercises

## Section 6.4 First-Order Linear Differential Equations

Objective: In this lesson you learned how to solve a first-order linear differential equation and a Bernoulli differential equation.

## I. First-Order Linear Differential Equations <br> (Pages 434-436)

A first-order linear differential equation is an equation of the form $\qquad$ where $P$ and $Q$ are continuous functions of $x$. An equation that is written in this form is said to be in $\qquad$ .

To solve a linear differential equation, $\qquad$

Then integrate $P(x)$ and form the expression $u(x)=e^{\int P(x) d x}$, which is called $\mathrm{a}(\mathrm{n})$ $\qquad$ . The general solution of the equation is $y=$ $\qquad$ .

Example 1: Write $e^{x} y^{\prime}=5-\left(2+e^{x}\right) y$ in standard form.

Example 2: Find the general solution of $y^{\prime}-3 y=e^{6 x}$.
II. Applications (Pages 436-438)

Give examples of types of problems that can be described in
terms of a first-order linear differential equation.

Course Number Instructor

Date

What you should learn
How to solve a first-order linear differential equation

## What you should learn

How to use linear differential equations to solve applied problems
III. Bernoulli Equation (Pages 438-440)

A well-known nonlinear equation, $y^{\prime}+P(x) y=Q(x) y^{n}$, that reduces to a linear one with an appropriate substitution is
$\qquad$ _.

State the general solution of the Bernoulli equation.

## Additional notes



Homework Assignment
Page(s)
Exercises

## Chapter 7 Applications of Integration

## Section 7.1 Area of a Region Between Two Curves

Objective: In this lesson you learned how to use a definite integral to find the area of a region bounded by two curves.
I. Area of a Region Between Two Curves (Pages 448-449)

If $f$ and $g$ are continuous on $[a, b]$ and $g(x) \leq f(x)$ for all $x$ in $[a, b]$, then the area of the region bounded by the graphs of $f$ and $g$ and the vertical lines $x=a$ and $x=b$ is

$$
A=\int_{a}^{b}
$$

$\qquad$ .

Example 1: Find the area of the region bounded by the graphs

$$
\text { of } y=6+3 x-x^{2}, y=2 x-9, x=-2, \text { and } x=2 .
$$

## II. Area of a Region Between Intersecting Curves (Pages 450-452)

A more common problem involves the area of a region bounded by two intersecting graphs, where the values of $a$ and $b$ must be

Example 2: Find the area of the region bounded by the graphs of $y=x^{2}-5$ and $y=1-x$.

If two curves intersect at more than two points. Then to find the area of the region between the graphs, you must $\qquad$
$\qquad$
$\qquad$ .
III. Integration as an Accumulation Process (Page 453)

In this section, the integration formula for the area between two curves was developed by using a $\qquad$ as the representative element. For each new application in the remaining sections of this chapter, an appropriate representative element will be constructed using $\qquad$
$\qquad$ . Each integration formula will then
be obtained by $\qquad$ these representative elements.

What you should learn
How to describe integration as an accumulation process


## Homework Assignment

Page(s)
Exercises

## Section 7.2 Volume: The Disk Method

Objective: In this lesson you learned how to find the volume of a solid of revolution by the disk and washer methods.

Course Number

Instructor

Date

What you should learn How to find the volume of a solid of revolution using the disk method

To find the volume of a solid of revolution with the Disk
Method, use one of the following formulas.
Horizontal axis of revolution:
Volume $=$


Vertical axis of revolution:
Volume $=$ $\qquad$
$\qquad$ .

The simplest application of the disk method involves a plane region bounded by $\qquad$ .

If the axis of revolution is the $x$-axis, the radius $R(x)$ is simply
$\qquad$ _.

Example 1: Find the volume of the solid formed by revolving the region bounded by the graph of $f(x)=0.5 x^{2}+4$ and the $x$-axis, between $x=0$ and $x=3$, about the $x$-axis.

## II. The Washer Method (Pages 461-463)

The Washer Method is used to find the volume of a solid of revolution that has $\qquad$ .

What you should learn How to find the volume of a solid of revolution using the washer method

Consider a region bounded by an outer radius $R(x)$ and an inner radius $r(x)$. The Washer Method states that if this region is revolved about its axis of revolution, the volume of the resulting solid is given by

Volume $=$ $\qquad$ .

Note that the integral involving the inner radius represents $\qquad$ and is $\qquad$ the integral involving the outer radius.

Example 2: Find the volume of the solid formed by revolving the region bounded by the graphs of
$f(x)=-x^{2}+5 x+3$ and $g(x)=-x+8$ about the $x$-axis.
III. Solids with Known Cross Sections (Pages 463-464)

With the disk method, you can find the volume of a solid having a circular cross section whose area is $A=\pi R^{2}$. This method can

## What you should learn

How to find the volume of a solid with a known cross section be generalized to solids of any shape, as long as you know $\qquad$ -.

For cross sections of area $A(x)$ taken perpendicular to the $x$-axis,
Volume $=\int$ $\qquad$ .

For cross sections of area $A(y)$ taken perpendicular to the $y$-axis,
Volume $=\int$ .

## Homework Assignment

Page(s)
Exercises

## Section 7.3 Volume: The Shell Method

Objective: In this lesson you learned how to find the volume of a solid of revolution by the shell method.

Course Number Instructor

Date
I. The Shell Method (Pages 469-471)

To find the volume of a solid of revolution with the Shell Method, use one of the following formulas.

Horizontal axis of revolution:
Volume $=$ $\qquad$

Vertical axis of revolution:

Volume $=$ $\square$
$\qquad$

Example 1: Using the shell method, find the volume of the solid formed by revolving the region bounded by the graph of $y=3+2 x$ and the $x$-axis, between $x=1$ and $x=4$, about the $y$-axis.
II. Comparison of Disk and Shell Methods (Pages 471-473)

For the disk method, the representative rectangle is always
$\qquad$ to the axis of revolution.

For the shell method, the representative rectangle is always
to the axis of revolution.
$\qquad$
y ants ol ic voruton.

What you should learn How to compare the uses of the disk method and the shell method

## What you should learn

 How to find the volume of a solid of revolution using the shell method$$
\square
$$

## Additional notes



## Homework Assignment

Page(s)
Exercises

## Section 7.4 Arc Length and Surfaces of Revolution

Objective: In this lesson you learned how to find the length of a curve and the surface area of a surface of revolution.

Course Number

Instructor

Date
I. Arc Length (Pages 478-481)

A rectifiable curve is $\qquad$
$\qquad$ A sufficient condition for the graph of a function $f$ to be rectifiable between $(a, f(a))$ and $(b, f(b))$ is that $\qquad$ Such
a function is continuously differentiable on $[a, b]$, and its graph on the interval $[a, b]$ is a $\qquad$ .

Let the function given by $y=f(x)$ represent a smooth curve on the interval $[a, b]$. The arc length of $f$ between $a$ and $b$ is


Similarly, for a smooth curve given by $x=g(y)$, the arc length of $g$ between $c$ and $d$ is

$$
s=\int \sqrt{ }
$$

Example 1: Find the arc length of the graph of $y=2 x^{3}-x^{2}+5 x-1$ on the interval $[0,4]$.
II. Area of a Surface of Revolution (Pages 482-484)

If the graph of a continuous function is revolved about a line, the resulting surface is a $\qquad$ -

Let $y=f(x)$ have a continuous derivative on the interval $[a, b]$. The area $S$ of the surface of revolution formed by revolving the graph of $f$ about a horizontal or vertical axis is

What you should learn How to find the arc length of a smooth curve

where $r(x)$ is the distance between the graph of $f$ and the axis of revolution. If $x=g(y)$ on the interval $[c, d]$, then the surface area is
$s=\quad \int \quad \sqrt{ }$
where $r(y)$ is the distance between the graph of $g$ and the axis of revolution.

Example 2: Find the area of the surface formed by revolving the graph of $f(x)=2 x^{2}$ on the interval $[2,4]$ about the $x$-axis.


## Homework Assignment

Page(s)
Exercises

## Section 7.5 Work

Objective: In this lesson you learned how to find the work done by a constant force and by a variable force.

Course Number Instructor

Date
I. Work Done by a Constant Force (Page 489)

Work is done by a force when $\qquad$ . If an object is moved a distance $D$ in the direction of an applied constant force $F$, then the work $W$ done by the force is defined as $\qquad$ .

Give two examples of forces.

A force can be thought of as $\qquad$ ; a
force changes the $\qquad$ of a body.

In the U.S. measurement system, work is typically expressed in

In the centimeter-gram-second (C-G-S) system, the basic unit of force is the $\qquad$ -the force required to produce an acceleration of 1 centimeter per second per second on a mass of 1 gram. In this system, work is typically expressed in $\qquad$ or $\qquad$ .

Example 1: Find the work done in lifting a 100-pound barrel 10 feet in the air.
II. Work Done by a Variable Force (Pages 490-494)

If a variable force is applied to an object, calculus is needed to determine the work done, because $\qquad$ ..
$\qquad$
$\qquad$

What you should learn How to find the work done by a constant force

What you should learn How to find the work done by a variable force

## Definition of Work Done by a Variable Force

If an object is moved along a straight line by a continuously varying force $F(x)$, then the work $W$ done by the force as the object is moved from $x=a$ to $x=b$ is

$$
\begin{aligned}
W & =\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} \Delta W_{i} \\
& =\int
\end{aligned}
$$

Hooke's Law states that the force $F$ required to compress or stretch a spring (within its elastic limits) is proportional to the distance $d$ that the spring is compressed or stretched from its original length. That is, $\qquad$ where the constant of proportionality $k$ (the spring constant) depends on the specific nature of the spring.

Newton's Law of Universal Gravitation states that the force $F$ of attraction between two particles of masses $m_{1}$ and $m_{2}$ is proportional to the product of the masses and inversely proportional to the square of the distance $d$ between the two particles. That is, $\qquad$ -

Coulomb's Law states that the force between two charges $q_{1}$ and $q_{2}$ in a vacuum is proportional to the product of the charges and inversely proportional to the square of the distance $d$ between the two charges. That is, $\qquad$ .

## Homework Assignment

Page(s)
Exercises

## Section 7.6 Moments, Centers of Mass, and Centroids

Objective: In this lesson you learned how to find centers of mass and centroids.

Course Number Instructor

Date

## What you should learn

 How to understand the definition of massWhat you should learn How to find the center of mass in a onedimensional system

Now imagine a coordinate line on which the origin corresponds to the fulcrum. Suppose several point masses are located on the $x$-axis. The measure of the tendency of this system to rotate about the origin is the $\qquad$ ,
and it is defined as $\qquad$ .

That is $M_{0}=$ $\qquad$ . If $M_{0}$ is 0 , the system is said to be $\qquad$

For a system that is not in equilibrium, the center of mass is defined as $\qquad$ -.

Let the point masses $m_{1}, m_{2}, \ldots, m_{n}$ be located at $x_{1}, x_{2}, \ldots, x_{n}$.
The center of mass is $\qquad$
$\qquad$ , where $m=$ is the total mass of the system.

## III. Center of Mass in a Two-Dimensional System (Page 501)

Let the point masses $m_{1}, m_{2}, \ldots, m_{n}$ be located at $\left(x_{1}, y_{1}\right)$,
$\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$. The moment about the $\boldsymbol{y}$-axis is $M_{y}=$ . The moment about
the $\boldsymbol{x}$-axis is $M_{x}=$ $\qquad$ .

The center of mass $(\bar{x}, \bar{y})$, or center of gravity, is
$\bar{x}=$ $\qquad$ , and $\bar{y}=$ $\qquad$ ,
where $m=$ $\qquad$ is the total mass of the system.
IV. Center of Mass of a Planar Lamina (Pages 502-504)

A planar lamina is $\qquad$
What you should learn How to find the center of mass of a planar lamina
$\qquad$ . Density is $\qquad$
planar laminas, density is considered to be $\qquad$
$\qquad$ . Density is denoted by $\qquad$ .

Let $f$ and $g$ be continuous functions such that $f(x) \geq g(x)$ on $[a, b]$, and consider the planar lamina of uniform density $\rho$ bounded by the graphs of $y=f(x), y=g(x)$, and $a \leq x \leq b$.

The moment about the $x$-axis is given by
$M_{x}=$

]
] $d x$

The moment about the $y$-axis is given by
$M_{y}=\quad \int$

The center of mass $(\bar{x}, \bar{y})$ is given by $\bar{x}=$ $\qquad$ ,
and $\bar{y}=\ldots$, where $m=\quad \int$

## V. Theorem of Pappus (Page 505)

State the Theorem of Pappus.
What you should learn How to use the Theorem of Pappus to find the volume of a solid of revolution

The Theorem of Pappus can be used to find the volume of a torus, which is $\qquad$ -
$\qquad$ -




## Additional notes



## Homework Assignment

Page(s)
Exercises

## Section 7.7 Fluid Pressure and Fluid Force

Objective: In this lesson you learned how to find fluid pressure and fluid force.

Course Number Instructor

Date
I. Fluid Pressure and Fluid Force (Pages 509-512)

Pressure is defined as $\qquad$
$\qquad$ . The fluid
pressure on an object at a depth h in a liquid is $\qquad$
$\qquad$ , where $w$ is the weight-density of the liquid per unit of volume.

When calculating fluid pressure, you can use an important physical law called Pascal's Principle, which states that $\qquad$
What you should learn How to find fluid pressure and fluid force

The fluid force on a submerged horizontal surface of area $A$ is
Fluid force $=F=$ $\qquad$ -.

Example 1: Find the fluid force on a horizontal metal disk of diameter 3 feet that is submerged in 12 feet of seawater ( $w=64.0$ ).

The force $\boldsymbol{F}$ exerted by a fluid of constant weight-density $w$ (per unit of volume) against a submerged vertical plane region from $y=c$ to $y=d$ is

$$
\begin{aligned}
F & =w \lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} h\left(y_{i}\right) L\left(y_{i}\right) \Delta y \\
& =-\int
\end{aligned}
$$

where $h(y)$ is the depth of the fluid at $y$ an $L(y)$ is the horizontal length of the region at $y$.

## Additional notes



## Homework Assignment

Page(s)
Exercises

## Chapter 8 Integration Techniques, L'Hôpital's

 Rule, and Improper Integrals
## Section 8.1 Basic Integration Rules

Objective: In this lesson you learned how to fit an integrand to one of

Course Number

Instructor

Date the basic integration rules.
I. Fitting Integrands to Basic Rules (Pages 520-523)

In this chapter, you study several integration techniques that greatly expand the set of integrals to which the basic integration rules can be applied. A major step in solving any integration

What you should learn
How to apply procedures for fitting an integrand to one of the basic integration rules

## Basic Integration Rules

$\int k f(u) d u=$ $\qquad$
$\int[f(u) \pm g(u)] d u=$ $\qquad$
$\int d u=$ $\qquad$

$$
=\frac{u^{n+1}}{n+1}+C, \quad n \neq-1
$$

$\int \frac{d u}{u}=$ $\qquad$
$\int e^{u} d u=$ $\qquad$
$\int a^{u} d u=$ $\qquad$
$\int \sin u d u=$ $\qquad$
$\int \cos u d u=$ $\qquad$
$\int \tan u d u=$ $\qquad$
$\int \cot u d u=$ $\qquad$
$\int \sec u d u=$ $\qquad$
$\int \csc u d u=$ $\qquad$
$\int \sec ^{2} u d u=$ $\qquad$
$\int \csc ^{2} u d u=$ $\qquad$
$\int \sec u \tan u d u=$ $\qquad$
$\int \csc u \cot u d u=$ $\qquad$
$\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=$ $\qquad$
$\int \frac{d u}{a^{2}+u^{2}}=$ $\qquad$
$\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=$ $\qquad$

Name seven procedures for fitting integrands to basic rules. Give an example of each procedure.

## Homework Assignment

Page (s)
Exercises

## Section 8.2 Integration by Parts

Objective: In this lesson you learned how to find an antiderivative using integration by parts.

Course Number Instructor

Date
I. Integration by Parts (Pages 527-532)

The integration technique of integration by parts is particularly useful for $\qquad$ -.

If $u$ and $v$ are functions of $x$ and have continuous derivatives, then the technique of integration by parts states that $\int u d v=$ $\qquad$ -.

List two guidelines for integration by parts:

Example 1: For the indefinite integral $\int x^{2} e^{2 x} d x$, explain which factor you would choose to be $d v$ and which

## Summary of Common Uses of Integration by Parts

List the choices for $u$ and $d v$ in these common integration situations.

1. $\int x^{n} e^{a x} d x, \int x^{n} \sin a x d x$, or $\int x^{n} \cos a x d x$
2. 
3. you would choose as $u$.

## What you should learn

 How to find an antiderivative using integration by parts2. $\int x^{n} \ln x d x, \int x^{n} \arcsin a x d x$, or $\int x^{n} \arctan a x d x$
3. $\int e^{a x} \sin b x d x$ or $\int e^{a x} \cos b x d x$

## II. Tabular Method (Page 532)

In problems involving repeated applications of integration by parts, a tabular method can help organize the work. This method

What you should learn
How to use a tabular method to perform integration by parts
$\qquad$ —,
$\qquad$ and $\int$

## Homework Assignment

Page(s)
Exercises

## Section 8.3 Trigonometric Integrals

Objective: In this lesson you learned how to evaluate trigonometric integrals.

Course Number Instructor

Date
I. Integrals Involving Powers of Sine and Cosine (Pages 536-538)

In this section you studied techniques for evaluating integrals of the form $\int \sin ^{m} x \cos ^{n} x d x$ and $\int \sec ^{m} x \tan ^{n} x d x$ where either $m$ or $n$ is a positive integer. To find antiderivatives for these forms, $\qquad$
$\qquad$
$\qquad$ .

To break up $\int \sin ^{m} x \cos ^{n} x d x$ into forms to which you can apply the Power Rule, use the following identities.
$\sin ^{2} x+\cos ^{2} x=$ $\qquad$
$\sin ^{2} x=$ $\qquad$
$\cos ^{2} x=$ $\qquad$

List three guidelines for evaluating integrals involving sine and cosine.

What you should learn How to solve trigonometric integrals involving powers of sine and cosine

Wallis's Formulas state that if $n$ is odd ( $n \geq 3$ ), then
$\int_{0}^{\pi / 2} \cos ^{n} x d x=$ $\qquad$
and that if $n$ is even ( $n \geq 2$ ), then
$\int_{0}^{\pi / 2} \cos ^{n} x d x=$ $\qquad$

## II. Integrals Involving Powers of Secant and Tangent

 (Pages 539-541)List five guidelines for evaluating integrals involving secant and tangent of the form $\int \sec ^{m} x \tan ^{n} x d x$.

## What you should learn

How to solve trigonometric integrals involving powers of secant and tangent

For integrals involving powers of cotangents and cosecants,
$\qquad$

Another strategy that can be useful when integrating trigonometric functions is $\qquad$ .

## III. Integrals Involving Sine-Cosine Products with Different Angles (Page 541)

Complete each of the following product-to-sum identities.
$\sin m x \sin n x=$ $\qquad$
What you should learn How to solve trigonometric integrals involving sine-cosine products with different angles

$$
\sin m x \cos n x=
$$

$\qquad$
$\cos m x \cos n x=$ $\qquad$

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 8.4 Trigonometric Substitution

Objective: In this lesson you learned how to use trigonometric substitution to evaluation an integral.

Course Number Instructor

Date
I. Trigonometric Substitution (Pages 545-549)

Now that you can evaluate integrals involving powers of trigonometric functions, you can use trigonometric substitution to evaluate integrals involving the radicals $\sqrt{a^{2}-u^{2}}, \sqrt{a^{2}+u^{2}}$, and $\sqrt{u^{2}-a^{2}}$. The objective with trigonometric substitution is

You do this with the $\qquad$ .

Trigonometric substitution ( $a>0$ ):

1. For integrals involving $\sqrt{a^{2}-u^{2}}$, let $u=$ $\qquad$ .

Then $\sqrt{a^{2}-u^{2}}=$ $\qquad$ , where $-\pi / 2 \leq \theta \leq \pi / 2$.
2. For integrals involving $\sqrt{a^{2}+u^{2}}$, let $u=$ $\qquad$ .

Then $\sqrt{a^{2}+u^{2}}=$ $\qquad$ , where $-\pi / 2<\theta<\pi / 2$.
3. For integrals involving $\sqrt{u^{2}-a^{2}}$, let $u=$ $\qquad$ .

Then $\sqrt{u^{2}-a^{2}}=$ $\qquad$ if $u>a$, where $0 \leq \theta<\pi / 2$;
or $\sqrt{u^{2}-a^{2}}=$ $\qquad$ if $u<-a$, where $\pi / 2<\theta \leq \pi$.

Special Integration Formulas ( $a>0$ )
$\int \sqrt{a^{2}-u^{2}} d u=$ $\qquad$
$\int \sqrt{u^{2}-a^{2}} d u=$

$\int \sqrt{u^{2}+a^{2}} d u=$

## II. Applications (Page 550)

Give two examples of applications of trigonometric substitution.

What you should learn How to use integrals to model and solve real-life applications

## Homework Assignment

Page(s)
Exercises

## Section 8.5 Partial Fractions

Objective: In this lesson you learned how to use partial fraction decomposition to integrate rational functions.

Course Number Instructor

Date

What you should learn How to understand the concept of a partial fraction decomposition

## Decomposition of $N(x) / D(x)$ into Partial Fractions

1. Divide if improper: If $N(x) / D(x)$ is $\qquad$
$\qquad$ (that is, if the degree of the numerator is greater than or equal to the degree of the denominator), divide $\qquad$ to
obtain $\frac{N(x)}{D(x)}=$ $\qquad$ ,
where the degree of $N_{1}(x)$ is less than the degree of $D(x)$.
Then apply steps 2,3 , and 4 to the proper rational expression $N_{1}(x) / D(x)$.
2. Factor denominator: Completely factor the denominator into factors of the form $\qquad$ where $a x^{2}+b x+c$ is irreducible.
3. Linear factors: For each factor of the form $(p x+q)^{m}$, the partial fraction decomposition must include the following sum of $m$ fractions.
4. Quadratic factors: For each factor of the form $\left(a x^{2}+b x+c\right)^{n}$, the partial fraction decomposition must include the following sum of $n$ fractions.
II. Linear Factors (Pages 556-557)

To find the basic equation of a partial fraction decomposition, $\qquad$
$\qquad$

What you should learn
How to use partial fraction decomposition with linear factors to integrate rational functions

After finding the basic equation, $\qquad$
$\qquad$
$\qquad$
$\qquad$

Example 1: Write the form of the partial fraction

$$
\text { decomposition for } \frac{x-4}{x^{2}-8 x+12}
$$

Example 2: Write the form of the partial fraction

$$
\text { decomposition for } \frac{2 x+1}{x^{3}-3 x^{2}+x-3}
$$

Example 3: Solve the basic equation

$$
5 x+3=A(x-1)+B(x+3) \text { for } A \text { and } B
$$

III. Quadratic Factors (Pages 558-560)

Guidelines for Solving the Basic Equation
List two guidelines for solving basic equations that involve linear factors.

## What you should learn

How to use partial fraction decomposition with quadratic factors to integrate rational functions

List four guidelines for solving basic equations that involve quadratic factors.

```
Homework Assignment
Page(s)
Exercises
```


## Section 8.6 Integration by Tables and Other Integration Techniques

Objective: In this lesson you learned how to evaluate an indefinite

Course Number Instructor

Date integral using a table of integrals and reduction formulas.
I. Integration by Tables (Pages 563-564)

Integration by tables is the procedure of integrating by means of .

What you should learn How to evaluate an indefinite integral using a table of integrals

Integration by tables requires $\qquad$

A computer algebra system consists, in part, of a database of integration tables. The primary difference between using a computer algebra system and using a table of integrals is $\qquad$
$\qquad$
$\qquad$
$\qquad$

Example 1: Use the integration table in Appendix B to identify an integration formula that could be used to find
$\int \frac{x}{3-x} d x$, and identify the substitutions you would use.

Example 2: Use the integration table in Appendix B to identify an integration formula that could be used to find $\int 3 x^{5} \ln x d x$, and identify the substitutions you would use.
II. Reduction Formulas (Page 565)

An integration table formula of the form
$\int f(x) d x=g(x)+\int h(x) d x$, in which the right side of the

What you should learn
How to evaluate an indefinite integral using reduction formulas
formula contains an integral, is called a $\qquad$
$\qquad$ because they $\qquad$
$\qquad$ .
III. Rational Functions of Sine and Cosine (Page 566)

If you are unable to find an integral in the integration tables that involves a rational expression of $\sin x$ and $\cos x$, try using the following special substitution to convert the trigonometric expression to a standard rational expression.

What you should learn
How to evaluate an indefinite integral involving rational functions of sine and cosine

The substitution
$u=$ $\qquad$ $=$ $\qquad$
yields
$\cos x=$ $\qquad$ ,
$\sin x=$ $\qquad$ ,
and $d x=$ $\qquad$ .

## Homework Assignment

Page(s)
Exercises

## Section 8.7 Indeterminate Forms and L'Hôpital's Rule

Objective: In this lesson you learned how to apply L'Hôpital's Rule to evaluate a limit.

Course Number Instructor

Date

## I. Indeterminate Forms (Page 569)

The forms $0 / 0$ and $\infty / \infty$ are called $\qquad$ because they $\qquad$

What you should learn How to recognize limits that produce indeterminate forms

Occasionally an indeterminate form may be evaluated by
$\qquad$ . However, not all indeterminate
forms can be evaluated in this manner. This is often true when
$\qquad$ are
involved.

## II. L'Hôpital's Rule (Pages 570-575)

The Extended Mean Value Theorem states that if $f$ and $g$ are differentiable on an open interval $(a, b)$ and continuous on $[a, b]$ such that $g^{\prime}(x) \neq 0$ for any $x$ in $(a, b)$, then there exists a point $c$ in $(a, b)$ such that $\frac{f^{\prime}(c)}{g^{\prime}(c)}=$ $\qquad$ -.

Let $f$ and $g$ be functions that are differentiable on an open interval $(a, b)$ containing $c$, except possibly at $c$ itself. Assume that $g^{\prime}(x) \neq 0$ for all $x$ in $(a, b)$, except possibly at $c$ itself.

L'Hôpital's Rule states that if the limit of $f(x) / g(x)$ as $x$ approaches $c$ produces the indeterminate form $0 / 0$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c}$ $\qquad$ , provided the limit on the right exists (or is infinite). This result also applies if the limit of $f(x) / g(x)$ as $x$ approaches $c$ produces any one of the indeterminate forms $\qquad$ .

[^5]What you should learn How to apply L'Hôpital's Rule to evaluate a limit

This theorem states that under certain conditions the limit of the quotient $f(x) / g(x)$ is determined by $\qquad$

Example 1: Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{2 x^{2}-3 x}$.

Example 2: Evaluate $\lim _{x \rightarrow 0} \frac{-3 x^{2}}{\sqrt{x+4}-(x / 4)-2}$.

## Homework Assignment

Page(s)
Exercises

## Section 8.8 Improper Integrals

Objective: In this lesson you learned how to evaluate an improper integral.

Course Number Instructor

Date
I. Improper Integrals with Infinite Limits of Integration
(Pages 580-583)

List two properties that make an integral an improper integral.

1. $\qquad$
2. 

If an integrand has an infinite discontinuity, then $\qquad$ .

Complete the following statements about improper integrals having infinite limits of integration.

1. If $f$ is continuous on the interval $[a, \infty)$, then

$$
\int_{a}^{\infty} f(x) d x=
$$

$\qquad$
2. If $f$ is continuous on the interval $(-\infty, b]$, then

$$
\int_{-\infty}^{b} f(x) d x=
$$

$\qquad$
3. If $f$ is continuous on the interval $(-\infty, \infty)$, then

$$
\int_{-\infty}^{\infty} f(x) d x=
$$

$\qquad$
In the first two cases, if the limit exists, then the improper integral $\qquad$ ; otherwise, the improper
integral $\qquad$ . In the third case, the integral on the left will diverge if $\qquad$
$\qquad$ .

## II. Improper Integrals with Infinite Discontinuities <br> (Pages 583-586)

Complete the following statements about improper integrals having infinite discontinuities at or between the limits of integration.

1. If $f$ is continuous on the interval $[a, b)$ and has an infinite discontinuity at $b$, then
$\int_{a}^{b} f(x) d x=$ $\qquad$
2. If $f$ is continuous on the interval $(a, b]$ and has an infinite discontinuity at $a$, then

$$
\int_{a}^{b} f(x) d x=
$$

$\qquad$
3. If $f$ is continuous on the interval $[a, b]$, except for some $c$ in $(a, b)$ at which $f$ has an infinite discontinuity, then $\int_{a}^{b} f(x) d x=$ $\qquad$
In the first two cases, if the limit exists, then the improper integral $\qquad$ ; otherwise, the improper
integral $\qquad$ In the third case, the improper
integral on the left diverges if $\qquad$ .

## Homework Assignment

## Page(s)

Exercises

## Chapter 9 Infinite Series

## Section 9.1 Sequences

Objective: In this lesson you learned how to determine whether a sequence converges or diverges.
I. Sequences (Page 596)

A sequence $\left\{a_{n}\right\}$ is a function whose domain is $\qquad$
What you should learn How to list the terms of a sequence

The numbers $a_{1}, a_{2}, a_{3}, \ldots$,
$a_{n}, \ldots$ are the $\qquad$ of the sequence. The number $a_{n}$ is the $\qquad$ of the sequence, and the entire sequence is denoted by $\qquad$ .

Example 1: Find the first four terms of the sequence defined by $a_{n}=n^{2}-4$
II. Limit of a Sequence (Pages 597-600)

If a sequence converges, its terms $\qquad$
$\qquad$ .

Let $L$ be a real number. The limit of a sequence $\left\{a_{n}\right\}$ is $L$, written as $\lim _{n \rightarrow \infty} a_{n}=L$ if for each $\varepsilon>0$, there exists $M>0$ such that . If the limit $L$ of a sequence exists, then the sequence $\qquad$ . If the limit of a sequence does not exist, then the sequence
$\qquad$ ـ.

If a sequence $\left\{a_{n}\right\}$ agrees with a function $f$ at every positive integer, and if $f(x)$ approaches a limit $L$ as $x \rightarrow \infty$, the sequence must $\qquad$ -.

Example 2: Find the limit of each sequence (if it exists) as $n$ approaches infinity.
a. $a_{n}=n^{2}-4$
b. $a_{n}=\frac{2 n^{2}}{3 n-n^{2}}$

Complete the following properties of limits of sequences. Let $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=K$.

1. $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=$ $\qquad$
2. $\lim _{n \rightarrow \infty} c a_{n}=$ $\qquad$
3. $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=$ $\qquad$
4. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=$ $\qquad$
If $n$ is a positive integer, then $\boldsymbol{n}$ factorial is defined as
$\qquad$
case, zero factorial is defined as $0!=$ $\qquad$

Another useful limit theorem that can be rewritten for sequences is the Squeeze Theorem, which states that if $\lim _{n \rightarrow \infty} a_{n}=L=\lim _{n \rightarrow \infty} b_{n}$ and there exists an integer $N$ such that $a_{n} \leq c_{n} \leq b_{n}$ for all $n>N$, then $\lim _{n \rightarrow \infty} c_{n}=$ $\qquad$ .

For the sequence $\left\{a_{n}\right\}$, if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\lim _{n \rightarrow \infty} a_{n}=$ $\qquad$ .

## III. Pattern Recognition for Sequences (Pages 600-601)

Example 3: Determine an $n$th term for the sequence

$$
0, \frac{1}{4},-\frac{2}{9}, \frac{3}{16},-\frac{4}{25}, \ldots
$$

## What you should learn

 How to write a formula for the $n$th term of sequence
## IV. Monotonic Sequences and Bounded Sequences <br> (Pages 602-603)

A sequence $\left\{a_{n}\right\}$ is monotonic if its terms are $\qquad$ monotonic sequences and bounded sequences

A sequence $\left\{a_{n}\right\}$ is $\qquad$ if there is a real number $M$ such that $a_{n} \leq M$ for all $n$. The number $M$ is called $\qquad$ of the sequence. A
sequence $\left\{a_{n}\right\}$ is $\qquad$ if there is a real number $N$ such that $N \leq a_{n}$ for all $n$. The number $N$ is called
$\qquad$ of the sequence. A sequence $\left\{a_{n}\right\}$
is $\qquad$ if it is bounded above and bounded below.

If a sequence $\left\{a_{n}\right\}$ is $\qquad$ ,
then it converges.

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 9.2 Series and Convergence

Objective: In this lesson you learned how to determine whether an infinite series converges or diverges.

Course Number Instructor

Date

What you should learn How to understand the definition of a convergent infinite series

If the sequence of partial sums $\left\{S_{n}\right\}$ converges to $S$, then the infinite series $\qquad$ to $S$. This limit is
denoted by $\lim _{n \rightarrow \infty} S_{n}=\sum_{n=1}^{\infty} a_{n}=S$, and $S$ is called the $\qquad$
$\qquad$ If the limit of the sequence of partial sums $\left\{S_{n}\right\}$ does not exist, then the series $\qquad$ .

A telescoping series is of the form $\left(b_{1}-b_{2}\right)+\left(b_{2}-b_{3}\right)+\left(b_{3}-b_{4}\right)+\left(b_{4}-b_{5}\right)+\cdots$, where $b_{2}$ is cancelled $\qquad$ . Because the $n$th partial sum of this series is $S_{n}=b_{1}-b_{n+1}$, it follows that a telescoping series will converge if and only if $b_{n}$
$\qquad$ . Moreover, if the series
converges, its sum is $\qquad$ .

## II. Geometric Series (Pages 610-612)

If $a$ is a nonzero real number, then the infinite series

What you should learn How to use properties of infinite geometric series
$\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+\cdots+a r^{n}+\cdots$ is called a $\qquad$
$\qquad$ with ratio $r$.

An infinite geometric series given by $\sum_{n=0}^{\infty} a r^{n}$ diverges if
$\qquad$ . If $\qquad$ , then the
series converges to the sum $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$.

Given the convergent infinite series $\sum_{n=1}^{\infty} a_{n}=A$ and $\sum_{n=1}^{\infty} b_{n}=B$
and real number $c$,
$\sum_{n=1}^{\infty} c a_{n}=$ $\qquad$
$\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=$ $\qquad$
$\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=$ $\qquad$
III. nth-Term Test for Divergence (Pages 612-613)

What you should learn
How to use the $n$ th-Term Test for Divergence of an infinite series
then the series $\sum_{n=1}^{\infty} a_{n}$ $\qquad$ .
The $\boldsymbol{n}$ th Term Test for Divergence states that if $\lim _{n \rightarrow \infty} a_{n} \neq 0$,

Example 1: Determine whether the series $\sum_{n=1}^{\infty} \frac{2 n^{2}}{3 n^{2}-1}$ diverges.

Homework Assignment
Page(s)
Exercises

## Section 9.3 The Integral Test and $p$-Series

Objective: In this lesson you learned how to determine whether an infinite series converges or diverges.

Course Number Instructor

Date

Important Vocabulary Define each term or concept.
General harmonic series

## I. The Integral Test (Pages 619-620)

The Integral Test states that if $f$ is positive, continuous and decreasing for $x \geq 1$ and $a_{n}=f(n)$, then $\sum_{n=1}^{\infty} a_{n}$ and $\int_{1}^{\infty} f(x) d x$ either $\qquad$ -

Remember that the convergence or divergences of $\sum a_{n}$ is not affected by deleting $\qquad$ .
Similarly, if the conditions for the Integral Test are satisfied for all $\qquad$ , you can simply use the integral
$\int_{N}^{\infty} f(x) d x$ to test $\qquad$ .
II. p-Series and Harmonic Series (Pages 621-622)

Let $p$ be a positive constant. An infinite series of the form
$\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots$ is called a $\qquad$ .

What you should learn How to use the Integral Test to determine whether an indefinite series converges or diverges

What you should learn How to use properties of $p$-series and harmonic series

If $p=1$, then the series $\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots$ is called the

The Test for Convergence of a $\boldsymbol{p}$-Series states that the $p$-series
$\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots$ diverges if $\qquad$ ,
or converges if $\qquad$ .

Example 1: Determine whether the series $\sum_{n=1}^{\infty} n^{-\sqrt{2}}$ converges or diverges.

## Homework Assignment

Page(s)
Exercises

## Section 9.4 Comparison of Series

Objective: In this lesson you learned how to determine whether an infinite series converges or diverges.

Course Number Instructor

Date
I. Direct Comparison Test (Pages 626-627)

This section presents two additional tests for positive-term series which greatly expand the variety of series you are able to test for convergence or divergence; they allow you to $\qquad$ -
$\qquad$
$\qquad$ .

Let $0<a_{n} \leq b_{n}$ for all $n$. The Direct Comparison Test states that if $\sum_{n=1}^{\infty} b_{n} \longrightarrow$, then $\sum_{n=1}^{\infty} a_{n}$ $\qquad$
If $\sum_{n=1}^{\infty} a_{n}$ $\qquad$ then $\sum_{n=1}^{\infty} b_{n}$ $\qquad$

Use your own words to give an interpretation of this test.
II. Limit Comparison Test (Pages 628-629)

Suppose that $a_{n}>0$ and $b_{n}>0$. The Limit Comparison Test states that if $\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=L$, where $L$ is finite and positive, then What you should learn How to use the Limit Comparison Test to determine whether a series converges or diverges the two series $\sum a_{n}$ and $\sum b_{n}$ either $\qquad$
$\qquad$ .

Describe circumstances under which you might apply the Limit Comparison Test.

The Limit Comparison Test works well for comparing a "messy" algebraic series with a $p$-series. In choosing an appropriate $p$-series, you must choose one with $\qquad$

In other words, when choosing a series for comparison, you can disregard all but $\qquad$
$\qquad$ -

## Homework Assignment

Page(s)
Exercises

## Section 9.5 Alternating Series

Objective: In this lesson you learned how to determine whether an infinite series converges or diverges.

Course Number Instructor

Date

Important Vocabulary Define each term or concept.
Alternating series

## Absolutely convergent

Conditionally convergent
I. Alternating Series (Pages 633-634)

Alternating series occur in two ways: $\qquad$
$\qquad$ .

Let $a_{n}>0$. The Alternating Series Test states that the alternating series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ and $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converge if the following two conditions are met:
1.
2.

Example 1: Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ converges or diverges.

## II. Alternating Series Remainder (Page 635)

For a convergent alternating series, the partial sum $S_{N}$ can be
$\qquad$

What you should learn How to use the Alternating Series Test to determine whether an infinite series converges

What you should learn
How to use the Alternating Series Remainder to approximate the sum of an alternating series

If a convergent alternating series satisfies the condition $a_{n+1} \leq a_{n}$, then the absolute value of the remainder $R_{N}$ involved in approximating the sum $S$ by $S_{N}$ is $\qquad$ .That is,
$\left|S-S_{N}\right|=\left|R_{N}\right| \leq a_{N+1}$.
III. Absolute and Conditional Convergence (Pages 636-637)

If the series $\Sigma\left|a_{n}\right|$ converges, then the series $\Sigma a_{n}$ $\qquad$
$\qquad$ .

Example 2: Is the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ absolutely or conditionally convergent?
IV. Rearrangement of Series (Pages 637-638)

The terms of an infinite series can be rearranged without changing the value of the sum of the terms only if $\qquad$ . If the series is , then it is possible that rearranging the terms of the series can change the value of the sum.
$\qquad$

## What you should learn

How to classify a convergent series as absolutely or conditionally convergent

## What you should learn

How to rearrange an infinite series to obtain a different sum

## Homework Assignment

Page(s)
Exercises

## Section 9.6 The Ratio and Root Tests

Objective: In this lesson you learned how to determine whether an infinite series converges or diverges.

Course Number

Instructor

Date
I. The Ratio Test (Pages 641-643)

Let $\sum_{n=1}^{\infty} a_{n}$ be an infinite series with nonzero terms. The Ratio

What you should learn How to use the Ratio Test to determine whether a series converges or diverges

Test states that:

1. The series converges absolutely if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \square$.
2. The series diverges if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|-\quad$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$
3. The test is inconclusive if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \square$.

Example 1: Use the Ratio Test to determine whether the series

$$
\sum_{n=0}^{\infty} \frac{4^{n}}{n!} \text { converges or diverges. }
$$

The Ratio Test is particularly useful for series that $\qquad$
$\qquad$ , such as those that involve $\qquad$
$\qquad$

## II. The Root Test (Page 644)

The Root Test for convergence or divergence of series works especially well for series involving $\qquad$ .

What you should learn How to use the Root Test to determine whether a series converges or diverges

Let $\sum_{n=1}^{\infty} a_{n}$ be an infinite series. The Root Test states that:

1. The series converges absolutely if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$ $\qquad$ -.
2. The series diverges if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$ $\qquad$ or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$ $\qquad$ .
3. The test is inconclusive if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$ $\qquad$ -.
III. Strategies for Testing Series (Pages 645-646)

List four guidelines for testing a series for convergence or divergence.
1.

## What you should learn

 How to review the tests for convergence and divergence of an infinite series2. 
3. 
4. 

Complete the following selected tests for series.

| Test | Series | Converges |
| :--- | :---: | :---: |
| $n$ th-Term | $\sum_{n=1}^{\infty} a_{n}$ | Diverges |
|  | $\sum_{n=0}^{\infty} a r^{n}$ |  |
|  | $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ |  |
| Ratio | $\sum_{n=1}^{\infty}\left(b_{n}-b_{n+1}\right)$ |  |
|  | $\sum_{n=1}^{\infty} a_{n}$ |  |

## Homework Assignment

## Page(s)

Exercises

## Section 9.7 Taylor Polynomials and Approximations

Objective: In this lesson you learned how to find Taylor or Maclaurin polynomial approximations of elementary functions.

## I. Polynomial Approximations of Elementary Functions (Pages 650-651)

To find a polynomial function $P$ that approximates another function $f$, $\qquad$
$\qquad$ The approximating polynomial is
said to be $\qquad$ .
II. Taylor and Maclaurin Polynomials (Pages 652-655)

If $f$ has $n$ derivatives at $c$, then the polynomial
$P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}$
is called the $\qquad$ .

If $c=0$, then $P_{n}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}$
is also called the $\qquad$ .

The accuracy of a Taylor or Maclaurin polynomial approximation is usually better at $x$-values $\qquad$
$\qquad$ The approximation is
usually better for higher-degree Taylor or Maclaurin polynomials than $\qquad$ .

## III. Remainder of a Taylor Polynomial (Pages 656-657)

If a function $f$ is differentiable through order $n+1$ in an interval $I$ containing $c$, then for each $x$ in $I$, Taylor's Theorem states that there exists $z$ between $x$ and $c$ such that $f(x)=$ $\qquad$
$\qquad$ ,

[^6]where $R_{n}(x)$ is given by $R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}$. The value $R_{n}(x)$ is called the $\qquad$ .

The practical application of this theorem lies not in calculating $R_{n}(x)$, but in $\qquad$
$\qquad$ .

## Homework Assignment

Page(s)
Exercises

## Section 9.8 Power Series

Objective: In this lesson you learned how to find the radius and interval of convergence of power series and how to differentiate and integrate power series.

## I. Power Series (Pages 661-662)

If $x$ is a variable, then an infinite series of the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots \text { is called a }
$$ . More generally, an

infinite series of the form

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+\cdots+a_{n}(x-c)^{n}+\cdots
$$

is called a $\qquad$ ,
where $c$ is a constant.
II. Radius and Interval of Convergence (Pages 662-663)

For a power series centered at $c$, precisely one of the following is true.

1. The series converges only at $\qquad$ .
2. There exists a real number $R>0$ such that the series converges absolutely for $\qquad$ , and
diverges for $\qquad$ .
3. The series converges absolutely for $\qquad$ .

The number $R$ is the $\qquad$ of
the power series. If the series converges only at $c$, the radius of convergence is $\qquad$ and if the series converges
for all $x$, the radius of convergence is $\qquad$ .
The set of all values of $x$ for which the power series converges is the $\qquad$ of the
power series.

[^7]Course Number Instructor

Date

What you should learn How to understand the definition of a power series

What you should learn How to find the radius and interval of convergence of a power series
III. Endpoint Convergence (Pages 664-665)

For a power series whose radius of convergence is a finite number $R$, each endpoint of the interval of convergence must be

## IV. Differentiation and Integration of Power Series (Pages 666-667)

If the function given by

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n}(x-c)^{n} \\
& =a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots
\end{aligned}
$$

has a radius of convergence of $R>0$, then, on the interval
$(c-R, c+R), f$ is $\qquad$
. Moreover, the derivative and antiderivative
of $f$ are as follows.

1. $f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1}$ $=$
2. $\int f(x) d x=C+\sum_{n=0}^{\infty} a_{n} \frac{(x-c)^{n+1}}{n+1}$ $=$

The radius of convergence of the series obtained by differentiating or integrating a power series is $\qquad$ The interval
of convergence, however, may differ as a result of $\qquad$ .

Homework Assignment
Page(s)
Exercises

## Section 9.9 Representation of Functions by Power Series

Objective: In this lesson you learned how to represent functions by power series.

Course Number Instructor Date

## I. Geometric Power Series (Pages 671-672)

Describe two ways for finding a geometric power series.

What you should learn How to find a geometric power series that represents a function
II. Operations with Power Series (Pages 673-675)

Let $f(x)=\sum a_{n} x^{n}$ and $g(x)=\sum b_{n} x^{n}$.

1. $f(k x)=\sum_{n=0}^{\infty}$
2. $f\left(x^{N}\right)=\sum_{n=0}^{\infty}$
3. $f(x) \pm g(x)=\sum_{n=0}^{\infty}$

The operations described above can change $\qquad$ -
$\qquad$

What you should learn How to construct a power series using series operations

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 9.10 Taylor and Maclaurin Series

Objective: In this lesson you learned how to find a Taylor or Maclaurin series for a function.

Course Number

Instructor

Date

What you should learn How to find a Taylor or Maclaurin series for a function

If $f$ is represented by a power series $f(x)=\sum a_{n}(x-c)^{n}$ for all $x$ in an open interval $I$ containing $c$, then $a_{n}=$ $\qquad$ ,
and $f(x)=$ $\qquad$
$\qquad$ -

The series is called the Taylor series for $f(x)$ at $c$ because $\qquad$
$\qquad$
$\qquad$ .

If a function $f$ has derivatives of all orders at $x=c$, then the series $\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}=$ $\qquad$ is called
the Taylor series for $f(x)$ at $c$. Moreover, if $c=0$, then the series is called the $\qquad$ .

If $\lim _{n \rightarrow \infty} R_{n}=0$ for all $x$ in the interval $I$, then the Taylor series for $f$
$\qquad$ , where
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}$.

Complete the list of guidelines for finding a Taylor series.
1.
2.
3.

## II. Binomial Series (Page 683)

The binomial series for a function of the form $f(x)=(1+x)^{k}$ is

What you should learn How to find a binomial series

## III. Deriving Taylor Series from a Basic List <br> (Pages 684-686)

Because direct computation of Taylor or Maclaurin coefficients can be tedious, the most practical way to find a Taylor or Maclaurin series is to develop power series for a basic list of elementary functions. From this list, you can determine power series for other functions by the operations of $\qquad$ with known
power series.

List power series for the following elementary functions and give the interval of convergence for each.
$\frac{1}{x}=$

$$
\frac{1}{1+x}=
$$

$\ln x=$
$e^{x}=$
$\sin x=$

## What you should learn

How to use a basic list of Taylor series to find other Taylor series
power series.
List power series for the following elementary functions and
give the interval of convergence for each.
$\frac{1}{x}=$
$\frac{1}{1+x}=$

| $\ln x=$ |
| :--- |
| $e^{x}=$ |
| $\sin x=$ |
| Larson/Edwards Calculus 9e Notetaking Guide |
| Copyright $@$ Cengage Learning. All rights reserved. |

$\cos x=$
$\arctan x=$
$\arcsin x=$
$(1+x)^{k}=$Section 9.10 Taylor and Maclaurin Series183
Additional notes
Additional notes
Larson/Edwards Calculus 9e Notetaking GuideCopyright © Cengage Learning. All rights reserved.

# Homework Assignment 

Page(s)
Exercises

# Chapter 10 Conics, Parametric Equations, And Polar Coordinates 

## Section 10.1 Conics and Calculus

Objective: In this lesson you learned how to analyze and write an

Course Number equation of a parabola, an ellipse, and a hyperbola.
Important Vocabulary
Directrix of a parabola
Focus of a parabola each term or concept.
Tangent of parabola
Foci of an ellipse
Vertices of an ellipse
Major axis of an ellipse
Center of an ellipse
Minor axis of an ellipse
Branches of a hyperbola
Transverse axis of a hyperbola
Conjugate axis of a hyperbola

Conjugate axis of a hyperbola
I. Conic Sections (Page 696)

A conic section, or conic, is $\qquad$

What you should learn Understand the definition of a conic section

Name the four basic conic sections: $\qquad$

In the formation of the four basic conics, the intersecting plane does not pass through the vertex of the cone. When the plane does pass through the vertex, the resulting figure is $a(n)$

[^8]$\qquad$ , such as

In this section, each conic is defined as a $\qquad$ of points satisfying a certain geometric property. For example, a circle is the collection of all points $(x, y)$ that are
$\qquad$ from a fixed point $(h, k)$. This locus definition easily produces the standard equation of a circle
$\qquad$ -
II. Parabolas (Pages 697-698)

A parabola is $\qquad$

| What you should learn |
| :--- |
| How to analyze and write |
| equations of parabolas |
| using properties of |
| parabolas |

## What you should learn

How to analyze and write equations of parabolas using properties of parabolas

The midpoint between the focus and the directrix is the
$\qquad$ of a parabola. The line passing through the focus and the vertex is the $\qquad$ of the parabola. The standard form of the equation of a parabola with a vertical axis having a vertex at $(h, k)$ and directrix $y=k-p$ is

The standard form of the equation of a parabola with a horizontal axis having a vertex at $(h, k)$ and directrix $x=h-p$ is

The focus lies on the axis $p$ units (directed distance) from the vertex. The coordinates of the focus are $\qquad$ for a vertical axis or $\qquad$ for a horizontal axis.

Example 1: Find the standard form of the equation of the parabola with vertex at the origin and focus $(1,0)$.

## A focal chord is

$\qquad$
$\qquad$

The specific focal chord perpendicular to the axis of a parabola is called the $\qquad$ _.

The reflective property of a parabola states that the tangent line to a parabola at a point $P$ makes equal angles with the following two lines:
1)
2)
III. Ellipses (Pages 699-702)

An ellipse is $\qquad$
What you should learn How to analyze and write equations of ellipses using properties of ellipses

The standard form of the equation of an ellipse with center $(h, k)$ and a horizontal major axis of length $2 a$ and a minor axis of length $2 b$, where $a>b$, is:

The standard form of the equation of an ellipse with center $(h, k)$ and a vertical major axis of length $2 a$ and a minor axis of length $2 b$, where $a>b$, is: $\qquad$

In both cases, the foci lie on the major axis, $c$ units from the center, with $c^{2}=$ $\qquad$ .

Example 2: Sketch the ellipse given by $4 x^{2}+25 y^{2}=100$.


Larson/Edwards Calculus 9e Notetaking Guide
Copyright © Cengage Learning. All rights reserved.

Let $P$ be a point on an ellipse. The Reflective Property of an
Ellipse states that $\qquad$
$\qquad$
$\qquad$ -.
$\qquad$
is given by the ratio $e=$ $\qquad$ . For an elongated ellipse, the value of $e$ is close to $\qquad$ . For every ellipse, the value of $e$ lies between $\qquad$ and $\qquad$ .
IV. Hyperbolas (Pages 703-705)

## A hyperbola is

$\qquad$ at two points called $\qquad$ .

The midpoint of a hyperbola's transverse axis is the of the hyperbola.

The standard form of the equation of a hyperbola centered at $(h, k)$ and having a horizontal transverse axis is

The standard form of the equation of a hyperbola centered at $(h, k)$ and having a vertical transverse axis is

The vertices are $a$ units from the center and the foci are $c$ units from the center. Moreover, $a, b$, and $c$ are related by the equation
$\qquad$ .

The asymptotes of a hyperbola with a horizontal transverse axis are $\qquad$ .
The asymptotes of a hyperbola with a vertical transverse axis are $\qquad$ .

## What you should learn

How to analyze and write equations of hyperbolas using properties of hyperbolas

The line through a hyperbola's two foci intersects the hyperbola
$\qquad$

Example 3: Sketch the graph of the hyperbola given by

$$
y^{2}-9 x^{2}=9
$$



The eccentricity of a hyperbola is $e=$ $\qquad$ , where the values of $e$ are $\qquad$ .

## Additional notes

## Additional notes











## Homework Assignment

Page(s)
Exercises

## Section 10.2 Plane Curves and Parametric Equations

Objective: In this lesson you learned how to sketch a curve represented by parametric equations.
I. Plane Curves and Parametric Equations (Pages 711-712)

If $f$ and $g$ are continuous functions of $t$ on an interval $I$, then the equations $x=f(t)$ and $y=g(t)$ are called $\qquad$ and $t$ is called the $\qquad$ -.

The set of points $(x, y)$ obtained as $t$ varies over the interval $I$ is called the $\qquad$ .
Taken together, the parametric equations and the graph are called a $\qquad$ denoted by $C$.

When sketching (by hand) a curve represented by a set of parametric equations, you can plot points in the $\qquad$ .

Each set of coordinates $(x, y)$ is determined from a value chosen for the $\qquad$ . By plotting the resulting points in the order of increasing values of $t$, the curve is traced out in a specific direction, called the $\qquad$ of the curve.

Example 1: Sketch the curve described by the parametric equations $x=t-3$ and $y=t^{2}+1,-1 \leq t \leq 3$.
II. Eliminating the Parameter (Pages 713-714)

Eliminating the parameter is the process of $\qquad$

Describe the process used to eliminate the parameter from a set of parametric equations.

What you should learn How to eliminate the parameter in a set of parametric equations

Course Number
Instructor
Date

What you should learn How to sketch the graph of a curve given by a set of parametric equations


When converting equations from parametric to rectangular form, the range of $x$ and $y$ implied by the parametric equations may be
$\qquad$ by the change to rectangular form. In such instances, the domain of the rectangular equation must be

To eliminate the parameter in equations involving trigonometric functions, try using the identity $\qquad$ .

## III. Finding Parametric Equations (Pages 715-716)

Describe how to find a set of parametric equations for a given graph.

What you should learn
How to find a set of parametric equations to represent a curve

A curve $C$ represented by $x=f(t)$ and $y=g(t)$ on an interval $I$ is called $\qquad$ if $f^{\prime}$ and $g^{\prime}$ are continuous on $I$ and not simultaneously 0 , except possibly at the endpoints of $I$. The curve $C$ is called piecewise smooth if $\qquad$ .

## IV. The Tautochrone and Brachistochrone Problems (Page 717)

Describe the tautochrone problem and the brachistochrone problem in your own words.

What you should learn
Understand two classic calculus problems, the tautochrone and brachistochrone problems

## Homework Assignment

Page(s)
Exercises

## Section 10.3 Parametric Equations and Calculus

Objective: In this lesson you learned how to use a set of parametric equations to find the slope of a tangent line to a curve and the arc length of a curve.
I. Slope and Tangent Lines (Pages 721-723)

If a smooth curve $C$ is given by the equations $x=f(t)$ and
$y=g(t)$, then the slope of $C$ at $(x, y)$ is $\frac{d y}{d x}=\square$,

Course Number

Instructor

Date

What you should learn How to find the slope of a tangent line to a curve by a set of parametric equations
$\frac{d x}{d t} \neq$ .

Example 1: For the curve given by the parametric equations $x=t-3$ and $y=t^{2}+1,-1 \leq t \leq 3$, find the slope at the point $(-3,1)$.

## II. Arc Length (Pages 723-725)

If a smooth curve $C$ is given by $x=f(t)$ and $y=g(t)$ such that $C$ does not intersect itself on the interval $a \leq t \leq b$ (except possibly at the endpoints), then the arc length of $C$ over the interval is

What you should learn
How to find the arc length of a curve given by a set of parametric equations given by

$$
s=\int_{a}^{b} \sqrt{ } d t=\int_{a}^{b} \sqrt{ } d t
$$

In the preceding section you saw that if a circle rolls along a line, a point on its circumference will trace a path called a
$\qquad$ . If the circle rolls around the circumference of another circle, the path of the point is an
$\qquad$ .
III. Area of Surface of Revolution (Page 726)

If a smooth curve $C$ given by $x=f(t)$ and $y=g(t)$ does not cross itself on the interval $a \leq t \leq b$, then the area $S$ of the surface of revolution formed by revolving $C$ about the coordinate axes is given by

1. $S=$
 Revolution about the $\qquad$ $: g(t) \geq 0$
2. $S=$

What you should learn How to find the area of a surface of revolution (parametric form) Revolution about $\qquad$
2.
 $\sqrt{ }$ Revolution about the $\qquad$ $: f(t) \geq 0$

## Homework Assignment

Page(s)
Exercises

## Section 10.4 Polar Coordinates and Polar Graphs

Objective: In this lesson you learned how to sketch the graph of an equation in polar form, find the slope of a tangent line to

Course Number Instructor

Date a polar graph, and identify special polar graphs.
I. Polar Coordinates (Page 731)

To form the polar coordinate system in the plane, fix a point $O$, called the $\qquad$ or $\qquad$ , and construct
from $O$ an initial ray called the $\qquad$ . Then each point $P$ in the plane can be assigned $\qquad$
$(r, \theta)$ as follows:

1) $r=$ $\qquad$
2) $\theta=$ $\qquad$

In the polar coordinate system, points do not have a unique representation. In general, the point $(r, \theta)$ can be represented as
$\qquad$ or $\qquad$ , where
$n$ is any integer. Moreover, the pole is represented by $(0, \theta)$, where $\theta$ is $\qquad$ —.

Example 1: Plot the point $(r, \theta)=(-2,11 \pi / 4)$ on the polar coordinate system.


Example 2: Find another polar representation of the point $(4, \pi / 6)$.

## II. Coordinate Conversion (Page 732)

The polar coordinates $(r, \theta)$ of a point are related to the rectangular coordinates $(x, y)$ of the point as follows . . .

Example 3: Convert the polar coordinates (3, $3 \pi / 2$ ) to rectangular coordinates.
III. Polar Graphs (Pages 733-734)

One way to sketch the graph of a polar equation is to
$\qquad$
What you should learn How to sketch the graph of an equation given in polar form

What you should learn How to rewrite rectangular coordinates and equations in polar form and vice versa

To convert a rectangular equation to polar form, $\qquad$ _
$\qquad$

Example 4: Find the rectangular equation corresponding to the polar equation $r=\frac{-5}{\sin \theta}$.

Example 5: Sketch the graph of the polar equation $r=3 \cos \theta$.

$\qquad$ -
$\qquad$ -.
IV. Slope and Tangent Lines (Pages 735-736)

If $f$ is a differentiable function of $\theta$, then the slope of the tangent line to the graph of $r=f(\theta)$ at the point $(r, \theta)$ is

What you should learn How to find the slope of a tangent line to a polar graph
$\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=$
provided that $\frac{d x}{d \theta} \neq 0$ at $(r, \theta)$.
Solutions to $\frac{d y}{d \theta}=0$ yield $\qquad$ -,
provided that $\frac{d x}{d \theta} \neq 0$. Solutions to $\frac{d x}{d \theta}=0$ yield $\qquad$
$\longrightarrow$, provided that $\frac{d y}{d \theta} \neq 0$.
If $f(\alpha)=0$ and $f^{\prime}(\alpha) \neq 0$, then the line $\theta=\alpha$ is $\qquad$
. This theorem
is useful because it states that $\qquad$
$\qquad$

## V. Special Polar Graphs (Page 737)

List the general equations that yield each of the following types of special polar graphs:

What you should learn How to identify several types of special polar graphs

Limaçons:
Rose curves:
Circles:
Lemniscates:

## Additional notes



Homework Assignment
Page(s)
Exercises

## Section 10.5 Area and Arc Length in Polar Coordinates

Objective: In this lesson you learned how to find the area of a region bounded by a polar graph and the arc length of a

Course Number Instructor

Date polar graph.

What you should learn
How to find the area of a region bounded by a polar graph
II. Points of Intersection of Polar Graphs (Pages 743-744)

Explain why care must be taken in determining the points of intersection of two polar graphs.

What you should learn How to find the points of intersection of two polar graphs length of a polar graph

## IV. Area of a Surface of Revolution (Page 746)

Let $f$ be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The area of the surface formed by revolving the graph of $r=f(\theta)$ from $\theta=\alpha$ to $\theta=\beta$ about the indicated line

What you should learn
How to find the area of a surface of revolution (polar form) is as follows.

1. About the polar axis:
2. About the line $\theta=\frac{\pi}{2}$ :


## Homework Assignment

Page(s)
Exercises

## Section 10.6 Polar Equations of Conics and Kepler's Laws

Objective: In this lesson you learned how to analyze and write a polar equation of a conic.

Course Number Instructor

Date

## I. Polar Equations of Conics (Pages 750-752)

Let $F$ be a fixed point (focus) and $D$ be a fixed line (directrix) in the plane. Let $P$ be another point in the plane and let $e$ (eccentricity) be the ratio of the distance between $P$ and $F$ to the distance between $P$ and $D$. The collection of all points $P$ with a given eccentricity is a $\qquad$ .

The conic is an ellipse if $\qquad$ . The conic is a parabola if $\qquad$ Finally, the conic is a hyperbola if $\qquad$ .

For each type of conic, the pole corresponds to the $\qquad$ .

The graph of the polar equation $\qquad$ is a conic with a vertical directrix to the right of the pole, where $e>0$ is the eccentricity and $|d|$ is the distance between the focus (pole) and the directrix.

The graph of the polar equation $\qquad$ is a conic with a vertical directrix to the left of the pole, where $e>0$ is the eccentricity and $|d|$ is the distance between the focus (pole) and the directrix.

The graph of the polar equation $\qquad$ is a conic with a horizontal directrix above the pole, where $e>0$ is the eccentricity and $|d|$ is the distance between the focus (pole) and the directrix.

The graph of the polar equation $\qquad$ is a conic with a horizontal directrix below the pole, where $e>0$ is the eccentricity and $|d|$ is the distance between the focus (pole) and the directrix.

What you should learn How to analyze and write polar equations of conics

Example 1: Identify the type of conic from the polar equation

$$
r=\frac{36}{10+12 \sin \theta}, \text { and describe its orientation. }
$$

II. Kepler's Laws (Pages 753-754)

List Kepler's Laws, which can be used to describe the orbits of the planets about the sun.

What you should learn How to understand and use Kepler's Laws of planetary motion
1.
2.
3.


## Homework Assignment

Page(s)
Exercises

# Chapter 11 Vectors and the Geometry of Space 

## Section $11.1 \quad$ Vectors in the Plane

Course Number

Date

Objective: In this lesson you learned how to represent vectors, perform basic vector operations, and represent vectors graphically.

Important Vocabulary Define each term or concept.
Vector $v$ in the plane

Standard position
Zero vector
Unit vector

Standard unit vectors
I. Component Form of a Vector (Pages 764-765)

A directed line segment has an $\qquad$ and a
$\qquad$ .

The magnitude of the directed line segment $\overrightarrow{P Q}$, denoted by
$\qquad$ , is its $\qquad$ The length of a
directed line segment can be found by $\qquad$ —.

If $\mathbf{v}$ is a vector in the plane whose initial point is at the origin and whose terminal point is $\left(v_{1}, v_{2}\right)$, then the $\qquad$
$\qquad$ is given by $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$, where the
coordinates $v_{1}$ and $v_{2}$ are called the $\qquad$ .

If $P\left(p_{1}, p_{2}\right)$ and $Q\left(q_{1}, q_{2}\right)$ are the initial and terminal points of a directed line segment, the component form of the vector $\mathbf{v}$ represented by $\overrightarrow{P Q}$ is $\qquad$ $=$ $\qquad$ .

The length (or magnitude) of $\mathbf{v}$ is:
$\square$

What you should learn
How to write the component form of a vector

If $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle, \mathbf{v}$ can be represented by the $\qquad$
$\qquad$ from $P(0,0)$ to
$Q\left(v_{1}, v_{2}\right)$.

The length of $\mathbf{v}$ is also called the $\qquad$ .

Example 1: Find the component form and length of the vector $\mathbf{v}$ that has $(1,7)$ as its initial point and $(4,3)$ as its terminal point.
II. Vector Operations (Pages 766-769)

Let $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ be vectors and let $c$ be a scalar.
Then the vector sum of $\mathbf{u}$ and $\mathbf{v}$ is the vector:

## What you should learn

How to perform vector operations and interpret the results geometrically

$$
\mathbf{u}+\mathbf{v}=
$$

$\qquad$
and the scalar multiple of $c$ and $\mathbf{u}$ is the vector:
$c \mathbf{u}=$ $\qquad$
Furthermore, the negative of $\mathbf{v}$ is the vector

$$
-\mathbf{v}=
$$

$\qquad$
and the difference of $\mathbf{u}$ and $\mathbf{v}$ is

$$
\mathbf{u}-\mathbf{v}=
$$

$\qquad$

Geometrically, the scalar multiple of a vector $\mathbf{v}$ and a scalar $c$ is
$\qquad$

If $c$ is positive, $c \mathbf{v}$ has the $\qquad$ direction as $\mathbf{v}$, and if $c$ is negative, $c \mathbf{v}$ has the $\qquad$ direction.

To add two vectors geometrically, $\qquad$ _
$\qquad$
$\qquad$ .

The vector $\mathbf{u}+\mathbf{v}$, called the $\qquad$ , is
$\qquad$
$\qquad$ -.

Example 2: Let $\mathbf{u}=\langle 1,6\rangle$ and $\mathbf{v}=\langle-4,2\rangle$. Find:
(a) $3 \mathbf{u}$
(b) $\mathbf{u}+\mathbf{v}$

Let $\mathbf{u}, \mathbf{v}$, and $\mathbf{w}$ be vectors in the plane, and let $c$ and $d$ be scalars. Complete the following properties of vector addition and scalar multiplication:

1. $\mathbf{u}+\mathbf{v}=$ $\qquad$
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=$ $\qquad$
3. $\mathbf{u}+\mathbf{0}=$ $\qquad$
4. $\mathbf{u}+(-\mathbf{u})=$ $\qquad$
5. $c(d \mathbf{u})=$ $\qquad$
6. $(c+d) \mathbf{u}=$ $\qquad$
7. $c(\mathbf{u}+\mathbf{v})=$ $\qquad$
8. $1(\mathbf{u})=$ $\qquad$ ; $0(\mathbf{u})=$ $\qquad$

Any set of vectors, with an accompanying set of scalars, that satisfies these eight properties is a $\qquad$ .

Let $\mathbf{v}$ be a vector and let $c$ be a scalar. Then
$\|c \mathbf{v}\|=$ $\qquad$

To find a unit vector $\mathbf{u}$ that has the same direction as a given nonzero vector $\mathbf{v}$, $\qquad$

In this case, the vector $\mathbf{u}$ is called a $\qquad$
$\qquad$ . The process of multiplying $\mathbf{v}$ by $1 /\|\mathbf{v}\|$
to get a unit vector is called $\qquad$ .

Example 3: Find a unit vector in the direction of $\mathbf{v}=\langle-8,6\rangle$.
III. Standard Unit Vectors (Pages 769-770)

Let $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$. Then the standard unit vectors can be used to represent $\mathbf{v}$ as $\mathbf{v}=$ $\qquad$ , where the scalar $v_{1}$ is called the $\qquad$ and the scalar $v_{2}$ is called the $\qquad$ . The vector $\operatorname{sum} v_{1} \mathbf{i}+v_{2} \mathbf{j}$ is called a $\qquad$ of the vectors $\mathbf{i}$ and $\mathbf{j}$.

Example 4: Let $\mathbf{v}=\langle-5,3\rangle$. Write $\mathbf{v}$ as a linear combination of the standard unit vectors $\mathbf{i}$ and $\mathbf{j}$.

Example 5: Let $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j}$ and $\mathbf{w}=2 \mathbf{i}+9 \mathbf{j}$. Find $\mathbf{v}+\mathbf{w}$.

If $\mathbf{u}$ is a unit vector and $\theta$ is the angle (measured
counterclockwise) from the positive $x$-axis to $\mathbf{u}$, the terminal point of $\mathbf{u}$ lies on the unit circle and $\mathbf{u}=$ $\qquad$ $=$
$\qquad$ -.

Now, if $\mathbf{v}$ is any nonzero vector that makes an angle $\theta$ with the positive $x$-axis, it has the same direction as $\mathbf{u}$ and
$\mathbf{v}=$ $\qquad$ $=$ $\qquad$ .
IV. Applications of Vectors (Pages 770-771)

Describe several real-life applications of vectors.

## What you should learn

How to write a vector as a linear combination of standard unit vectors

## Section 11.2 Space Coordinates and Vectors in Space

Objective: In this lesson you learned how to plot points in a threedimensional coordinate system and analyze vectors in

Course Number Instructor

Date space.

Important Vocabulary Define each term or concept.

## Sphere

Standard unit vector notation in space

Parallel vectors in space

## I. Coordinates in Space (Pages 775-776)

A three-dimensional coordinate system is constructed by
$\qquad$
$\qquad$

What you should learn How to understand the three-dimensional rectangular coordinate system

Taken as pairs, the axes determine three coordinate planes: the
$\qquad$ , the $\qquad$ , and the $\qquad$ .

These three coordinate planes separate the three-space into eight
$\qquad$ . The first of these is the one for which $\qquad$
$\qquad$ .

In the three-dimensional system, a point $P$ in space is determined by an ordered triple $(x, y, z)$, where $x, y$, and $z$ are as follows $\ldots$
$\qquad$
$=$
$y=$ ,
and $z=$ $\qquad$ .

A three-dimensional coordinate system can have either a $\qquad$ orientation. To
determine the orientation of a system, $\qquad$
$\qquad$

The distance between the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ given by the Distance Formula in space is

$$
d=\sqrt{ }
$$

The midpoint of the line segment joining the points ( $x_{1}, y_{1}, z_{1}$ ) and $\left(x_{2}, y_{2}, z_{2}\right)$ given by the Midpoint Formula in Space is


Example 1: For the points (2, 0, - 4) and ( $-1,4,6$ ), find
(a) the distance between the two points, and
(b) the midpoint of the line segment joining them.

The standard equation of a sphere whose center is $\left(x_{0}, y_{0}, z_{0}\right)$ and whose radius is $r$ is

Example 2: Find the center and radius of the sphere whose equation is $x^{2}+y^{2}+z^{2}-4 x+2 y+8 z+17=0$.
II. Vectors in Space (Pages 777-779)

In space, vectors are denoted by ordered triples of the form

What you should learn
How to analyze vectors in space

The zero vector in space is denoted by $\qquad$ -

If $\mathbf{v}$ is represented by the directed line segment from $P\left(p_{1}, p_{2}, p_{3}\right)$
to $Q\left(q_{1}, q_{2}, q_{3}\right)$, the component form of $\mathbf{v}$ is given by

Two vectors are equal if and only if $\qquad$
$\qquad$ .

The length of $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ is:
$\|\mathbf{u}\|=\sqrt{ }$

A unit vector $\mathbf{u}$ in the direction of $\mathbf{v}$ is $\qquad$ .

The sum of $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is
$\mathbf{u}+\mathbf{v}=$ $\qquad$ .

The scalar multiple of the real number $c$ and $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ is $c \mathbf{u}=$ $\qquad$ .

Example 3: Determine whether the vectors $\langle 6,1,-3\rangle$ and $\langle-2,-1 / 3,1\rangle$ are parallel.

To use vectors to determine whether three points $P, Q$, and $R$ in space are collinear, $\qquad$
$\qquad$ .

## III. Application (Page 779)

Describe a real-life application of vectors in space.

What you should learn How to use threedimensional vectors to solve real-life problems

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 11.3 The Dot Product of Two Vectors

Objective: In this lesson you learned how to find the dot product of two vectors in the plane or in space.

Course Number Instructor

Date

Important Vocabulary Define each term or concept.
Angle between two nonzero vectors
Orthogonal
I. The Dot Product (Pages 783-784)

The dot product of $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ is
$\qquad$ .

The dot product of $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is
$\mathbf{u} \cdot \mathbf{v}=$ $\qquad$ .

The dot product of two vectors yields a $\qquad$ .

Let $\mathbf{u}, \mathbf{v}$, and $\mathbf{w}$ be vectors in the plane or in space and let $c$ be a scalar. Complete the following properties of the dot product:

1. $\mathbf{u} \cdot \mathbf{v}=$ $\qquad$
2. $\mathbf{0} \cdot \mathbf{v}=$ $\qquad$
3. $\mathbf{u} \bullet(\mathbf{v}+\mathbf{w})=$ $\qquad$
4. $\mathbf{v} \bullet \mathbf{v}=$ $\qquad$
5. $c(\mathbf{u} \bullet \mathbf{v})=$ $\qquad$ $=$ $\qquad$

Example 1: Find the dot product: $\langle 5,-4\rangle \bullet\langle 9,-2\rangle$.

Example 2: Find the dot product of the vectors $\langle-1,4,-2\rangle$ and $\langle 0,-1,5\rangle$.
II. Angle Between Two Vectors (Pages 784-785)

If $\theta$ is the angle between two nonzero vectors $\mathbf{u}$ and $\mathbf{v}$, then $\theta$ can be determined from $\qquad$ .

What you should learn
How to use properties of the dot product of two vectors

What you should learn
How to find the angle between two vectors using the dot product

Example 3: Find the angle between $\mathbf{v}=\langle 5,-4\rangle$ and $\mathbf{w}=\langle 9,-2\rangle$.

An alternative way to calculate the dot product between two vectors $\mathbf{u}$ and $\mathbf{v}$, given the angle $\theta$ between them, is
$\qquad$ .

Two vectors $\mathbf{u}$ and $\mathbf{v}$ are orthogonal if $\qquad$ .

Two nonzero vectors are orthogonal if and only if $\qquad$ .

Example 4: Are the vectors $\mathbf{u}=\langle 1,-4\rangle$ and $\mathbf{v}=\langle 6,2\rangle$ orthogonal?

## III. Direction Cosines (Page 786)

For a vector in the plane, it is convenient to measure direction in terms of the angle, measured counterclockwise, from

## What you should learn

How to find the direction cosines of a vector in space
$\qquad$ . In space it is more
convenient to measure direction in terms of $\qquad$
$\qquad$ . The angles $\alpha, \beta$, and $\gamma$ are the $\qquad$ , and $\cos \alpha, \cos \beta$, and $\cos \gamma$ are the $\qquad$
$\qquad$ -.

The measure of $\alpha$, the angle between $\mathbf{v}$ and $\mathbf{i}$, can be found from
$\qquad$ . The measure of $\beta$, the angle
between $\mathbf{v}$ and $\mathbf{j}$, can be found from $\qquad$ .

The measure of $\gamma$, the angle between $\mathbf{v}$ and $\mathbf{k}$, can be found from
$\qquad$ .

Any nonzero vector $\mathbf{v}$ in space has the normalized form $\frac{\mathbf{v}}{\|\mathbf{v}\|}=$
$\qquad$ .

The sum of the squares of the directions cosines
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=$ $\qquad$ _.
IV. Projections and Vector Components (Pages 787-788)

Let $\mathbf{u}$ and $\mathbf{v}$ be nonzero vectors. Moreover, let $\mathbf{u}=\mathbf{w}_{1}+\mathbf{w}_{2}$, where $\mathbf{w}_{1}$ is parallel to $\mathbf{v}$, and $\mathbf{w}_{2}$ is orthogonal to $\mathbf{v}$. The vectors $\mathbf{w}_{1}$ and $\mathbf{w}_{2}$ are called $\qquad$ -.
The vector $\mathbf{w}_{1}$ is called the projection of $\mathbf{u}$ onto $\mathbf{v}$ and is denoted by $\qquad$ . The vector $\mathbf{w}_{2}$ is given by , and is called the $\qquad$
$\qquad$ -.

Let $\mathbf{u}$ and $\mathbf{v}$ be nonzero vectors. The projection of $\mathbf{u}$ onto $\mathbf{v}$ is given by $\operatorname{proj}_{\mathbf{v}} \mathbf{u}=$ $\qquad$ _.

## V. Work (Page 789)

The work $W$ done by a constant force $\mathbf{F}$ as its point of application moves along the vector $\stackrel{\rightharpoonup}{P Q}$ is given by either of the

What you should learn How to find the projection of a vector onto another vector

What you should learn How to use vectors to find the work done by a constant force following:
1.
2.

## Additional notes








## Homework Assignment

Page(s)
Exercises

## Section 11.4 The Cross Product of Two Vectors in Space

Course Number Instructor

Date
I. The Cross Product (Pages 792-796)

A vector in space that is orthogonal to two given vectors is called their $\qquad$ .

Let $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$ and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$ be two vectors in space. The cross product of $\mathbf{u}$ and $\mathbf{v}$ is the vector
$\mathbf{u} \times \mathbf{v}=$ $\qquad$

Describe a convenient way to remember the formula for the cross product.

Example 1: Given $\mathbf{u}=-2 \mathbf{i}+3 \mathbf{j}-3 \mathbf{k}$ and $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$, find the cross product $\mathbf{u} \times \mathbf{v}$.

Let $\mathbf{u}, \mathbf{v}$, and $\mathbf{w}$ be vectors in space and let $c$ be a scalar. Complete the following properties of the cross product:

1. $\mathbf{u} \times \mathbf{v}=$ $\qquad$
2. $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=$ $\qquad$
3. $c(\mathbf{u} \times \mathbf{v})=$ $\qquad$
4. $\mathbf{u} \times \mathbf{0}=$ $\qquad$
5. $\mathbf{u} \times \mathbf{u}=$ $\qquad$
6. $u \bullet(v \times w)=$ $\qquad$

Complete the following geometric properties of the cross product, given $\mathbf{u}$ and $\mathbf{v}$ are nonzero vectors in space and $\theta$ is the angle between $\mathbf{u}$ and $\mathbf{v}$.

1. $\mathbf{u} \times \mathbf{v}$ is orthogonal to $\qquad$ .

What you should learn How to find the cross product of two vectors in space
2. $\|\mathbf{u} \times \mathbf{v}\|=$ $\qquad$ .
3. $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ if and only if $\qquad$
$\qquad$ .
4. $\|\mathbf{u} \times \mathbf{v}\|=$ area of the parallelogram having $\qquad$
$\qquad$
II. The Triple Scalar Product (Pages 796-797)

For vectors $\mathbf{u}, \mathbf{v}$, and $\mathbf{w}$ in space, the dot product of $\mathbf{u}$ and $\mathbf{v} \times \mathbf{w}$ is called the $\qquad$ of $\mathbf{u}, \mathbf{v}$, and $\mathbf{w}$, and is found as

$$
\mathbf{u} \bullet(\mathbf{v} \times \mathbf{w})=\left.\right|_{-}
$$

The volume $V$ of a parallelepiped with vectors $\mathbf{u}, \mathbf{v}$, and $\mathbf{w}$ as adjacent edges is $\qquad$ -.

Example 2: Find the volume of the parallelepiped having
$\mathbf{u}=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}, \mathbf{v}=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$, and $\mathbf{w}=4 \mathbf{i}-3 \mathbf{k}$ as adjacent edges.

## What you should learn

How to use the triple scalar product of three vectors in space

Homework Assignment
Page(s)
Exercises

## Section 11.5 Lines and Planes in Space

Objective: In this lesson you learned how to find equations of lines and planes in space, and how to sketch their graphs.

Course Number

Instructor

Date
I. Lines in Space (Pages 800-801)

Consider the line $L$ through the point $P\left(x_{1}, y_{1}, z_{1}\right)$ and parallel to the vector $\mathbf{v}=\langle a, b, c\rangle$. The vector $\mathbf{v}$ is $\qquad$ for the line $L$, and $a, b$, and $c$ are $\qquad$

One way of describing the line $L$ is $\qquad$
$\qquad$
$\qquad$

A line $L$ parallel to the vector $\mathbf{v}=\langle a, b, c\rangle$ and passing through the point $P=\left(x_{1}, y_{1}, z_{1}\right)$ is represented by the following parametric equations, where $t$ is the parameter:

If the direction numbers $a, b$, and $c$ are all nonzero, you can eliminate the parameter $t$ to obtain the symmetric equations of the line:
II. Planes in Space (Pages 801-803)

The plane containing the point $\left(x_{1}, y_{1}, z_{1}\right)$ and having normal vector $\mathbf{n}=\langle a, b, c\rangle$ can be represented by the standard form of the equation of a plane, which is

By regrouping terms, you obtain the general form of the equation of a plane in space:

Given the general form of the equation of a plane it is easy to find a normal vector to the plane, $\qquad$
$\qquad$ .

What you should learn How to write a linear equation to represent a plane in space

Two distinct planes in three-space either are $\qquad$ or $\qquad$ .

If two distinct planes intersect, you can determine the angle $\theta$ between them from the angle between their normal vectors. If vectors $\mathbf{n}_{1}$ and $\mathbf{n}_{2}$ are normal to the two intersecting planes, the angle $\theta$ between the normal vectors is equal to the angle between the two planes and is given by

Consequently, two planes with normal vectors $\mathbf{n}_{1}$ and $\mathbf{n}_{2}$ are

1. $\qquad$ if $\mathbf{n}_{1} \bullet \mathbf{n}_{2}=0$.
2. $\qquad$ if $\mathbf{n}_{1}$ is a scalar multiple of $\mathbf{n}_{2}$.

## III. Sketching Planes in Space (Page 804)

If a plane in space intersects one of the coordinate planes, the line of intersection is called the $\qquad$ of the given plane in the coordinate plane.

To sketch a plane in space, $\qquad$

## What you should learn

How to sketch the plane given by a linear equation
$\qquad$ .

The plane with equation $3 y-2 z+1=0$ is parallel to
$\qquad$ -.

## IV. Distances Between Points, Planes, and Lines (Pages 805-807)

The distance between a plane and a point $Q$ (not in the plane) is

What you should learn
How to find the distances between points, planes, and lines in space
where $P$ is a point in the plane and $\mathbf{n}$ is normal to the plane.

## Homework Assignment

Page(s)
Exercises

## Section 11.6 Surfaces in Space

Objective: In this lesson you learned how to recognize and write equations for cylindrical and quadric surfaces, and surfaces of revolution.
I. Cylindrical Surfaces (Pages 812-813)

Let $C$ be a curve in a plane and let $L$ be a line not in a parallel plane. The set of all lines parallel to $L$ and intersecting $C$ is called a $\qquad$ . $C$ is called the $\qquad$
$\qquad$ of the cylinder, and the parallel lines are called $\qquad$ .

The equation of a cylinder whose rulings are parallel to one of the coordinate axes contains only $\qquad$
$\qquad$ .
II. Quadric Surfaces (Pages 813-817)

Quadric surfaces are $\qquad$ quadric surfaces

The equation of a quadric surface in space is $\qquad$
$\qquad$ . The
general form of the equation is $\qquad$
$\qquad$ . There are six basic
types of quadric surfaces: $\qquad$
$\qquad$
The intersection of a surface with a plane is called $\qquad$
$\qquad$ To visualize a
surface in space, it is helpful to $\qquad$
$\qquad$ .The traces of quadric
surfaces are $\qquad$ .

To classify a quadric surface, $\qquad$
$\qquad$
$\qquad$
$\qquad$
quadric surface not centered at the origin, you can form the standard equation by $\qquad$ .

Example 1: Classify and name the center of the surface given by $4 x^{2}+36 y^{2}-9 z^{2}+8 x-144 y+18 z+139=0$.
III. Surfaces of Revolution (Page 818-819)

Consider the graph of the radius function $y=r(z)$ in the $y z-$ plane. If this graph is revolved about the $z$-axis, it forms a

## What you should learn

How to recognize and write equations for surfaces of revolution
$\qquad$ The trace of the
surface in the plane $z=z_{0}$ is a circle whose radius is $r\left(z_{0}\right)$ and whose equation is $\qquad$ .

If the graph of a radius function $r$ is revolved about one of the coordinate axes, the equation of the resulting surface of revolution has one of the following forms.

1. Revolved about the $\qquad$ $: y^{2}+z^{2}=[r(x)]^{2}$
2. Revolved about the $\qquad$ $: x^{2}+z^{2}=[r(y)]^{2}$
3. Revolved about the $\qquad$ $: x^{2}+y^{2}=[r(z)]^{2}$

## Homework Assignment

Page(s)
Exercises

## Section 11.7 Cylindrical and Spherical Coordinates

Objective: In this lesson you learned how to use cylindrical or spherical coordinates to represent surfaces in space.

Course Number Instructor

Date

What you should learn How to use cylindrical coordinates to represent surfaces in space

In a cylindrical coordinate system, a point $P$ in space is represented by an ordered triple $\qquad$ ( $r, \theta$ ) is a polar representation of $\qquad$
$\qquad$ .$z$ is the directed distance from $\qquad$
$\qquad$ .

To convert from rectangular to cylindrical coordinates, or vice versa, use the following conversion guidelines for polar coordinates.

Cylindrical to rectangular:

## Rectangular to cylindrical:

The point $(0,0,0)$ is called the $\qquad$ Because the representation of a point in the polar coordinate system is not unique, it follows that $\qquad$ . .

Example 1: Convert the point $(r, \theta, z)=\left(2, \frac{\pi}{2}, 5\right)$ to rectangular coordinates.

Cylindrical coordinates are especially convenient for representing $\qquad$ .

Give an example of a cylindrical coordinate equation for a vertical plane containing the $z$-axis. $\qquad$

Give an example of a cylindrical coordinate equation for a horizontal plane. $\qquad$
II. Spherical Coordinates (Pages 825-826)

In a spherical coordinate system, a point $P$ in space is represented by an ordered triple $\qquad$ .

## What you should learn

How to use spherical coordinates to represent surfaces in space

1. $\rho$ is the distance between $\qquad$ .
2. $\theta$ is the same angle used in $\qquad$ .
3. $\phi$ is the angle between $\qquad$ .

To convert from spherical to rectangular coordinates, use:
$\qquad$

To convert from rectangular to spherical coordinates, use:
$\qquad$

To convert from spherical to cylindrical coordinates ( $r \geq 0$ ), use:

To convert from cylindrical to spherical coordinates ( $r \geq 0$ ), use:

## Homework Assignment

Page(s)
Exercises

## Chapter 12 Vector-Valued Functions

## Section 12.1 Vector-Valued Functions

Objective: In this lesson you learned how to analyze and sketch a space curve represented by a vector-valued function and how to apply the concepts of limits and continuity to vector-valued functions.

Course Number
Instructor

Date

What you should learn
How to analyze and sketch a space curve given by a vector-valued function

Vector-valued functions serve dual roles in the representation of curves. By letting the parameter $t$ represent time, you can use a vector-valued function to represent $\qquad$
$\qquad$ . Or, in the more general case, you can use a vector-
valued function to $\qquad$ . In
either case, the terminal point of the position vector $\mathbf{r}(t)$ coincides with $\qquad$ . The arrowhead on
the curve indicates the curve's $\qquad$ by pointing in the direction of increasing values of $t$.

Unless stated otherwise, the domain of a vector-valued function $\mathbf{r}$ is considered to be $\qquad$
$\qquad$ .

## II. Limits and Continuity (Pages 837-838)

## Definition of the Limit of a Vector-Valued Function

1. If $\mathbf{r}$ is a vector-valued function such that $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$,

What you should learn How to extend the concepts of limits and continuity to vectorvalued functions then $\qquad$ , provided $f$ and $g$ have limits as $t \rightarrow a$.
2. If $\mathbf{r}$ is a vector-valued function in space such that $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, then
$\qquad$ ,
provided $f, g$, and $h$ have limits as $t \rightarrow a$.

If $\mathbf{r}(t)$ approaches the vector $\mathbf{L}$ as $t \rightarrow a$, the length of the vector $\mathbf{r}(t)-\mathbf{L}$ approaches $\qquad$ .

A vector-valued function $\mathbf{r}$ is continuous at the point given by $t=a$ if $\qquad$
$\qquad$ . A vector-valued function $\mathbf{r}$ is
continuous on an interval $I$ if $\qquad$ .

## Homework Assignment

Page(s)
Exercises

## Section 12.2 Differentiation and Integration of Vector-Valued Functions

Objective: In this lesson you learned how to differentiate and integrate vector-valued functions.

## I. Differentiation of Vector-Valued Functions

 (Pages 842-845)The derivative of a vector-valued function $\mathbf{r}$ is defined by

Course Number Instructor

Date

What you should learn
How to differentiate a vector-valued function
which the
limit exists. If $\mathbf{r}^{\prime}(t)$ exists, then $\mathbf{r}$ is $\qquad$ .

If $\mathbf{r}^{\prime}(t)$ exists for all $t$ in an open interval $I$, then $\mathbf{r}$ is

Differentiability of vector-valued functions can be extended to closed intervals by $\qquad$ .

If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, where $f$ and $g$ are differentiable functions of $t$, then $\qquad$ _.

If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where $f, g$, and $h$ are differentiable functions of $t$, then $\qquad$ .

Example 1: Find $\mathbf{r}^{\prime}(t)$ for the vector-valued function given by

$$
\mathbf{r}(t)=\left(1-t^{2}\right) \mathbf{i}+5 \mathbf{j}+\ln t \mathbf{k} .
$$

The parameterization of the curve represented by the vectorvalued function $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$ is smooth on an open interval $I$ if $\qquad$

Let $\mathbf{r}$ and $\mathbf{u}$ be differentiable vector-valued functions of $t$, let $w$ be a differentiable real-valued function of $t$, and let $c$ be a scalar.

1. $D_{t}[\operatorname{cr}(t)]=$ $\qquad$ -
2. $D_{t}[\mathbf{r}(t) \pm \mathbf{u}(t)]=$ $\qquad$ .

[^9]3. $D_{t}[w(t) \mathbf{r}(t)]=$ $\qquad$ .
4. $D_{t}[\mathbf{r}(t) \mathbf{u}(t)]=$ $\qquad$ .
5. $D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]=$ $\qquad$ .
6. $D_{t}[\mathbf{r}(w(t))]=$ $\qquad$ .
7. If $\mathbf{r}(t) \mathbf{r}(t)=c$, then $\qquad$ .
II. Integration of Vector-Valued Functions (Pages 846-847)

If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, where $f$ and $g$ are continuous on $[a, b]$, then the $\qquad$ is
$\int \mathbf{r}(t) d t=\left[\int f(t) d t\right] \mathbf{i}+\left[\int g(t) d t\right] \mathbf{j}$ and its definite integral over the interval $\qquad$ is

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left[\int_{a}^{b} f(t) d t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) d t\right] \mathbf{j}
$$

If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where $f, g$, and $h$ are continuous on $[a, b]$, then the $\qquad$ is
$\int \mathbf{r}(t) d t=\left[\int f(t) d t\right] \mathbf{i}+\left[\int g(t) d t\right] \mathbf{j}+\left[\int h(t) d t\right] k$ and its
definite integral over the interval $\qquad$ is

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left[\int_{a}^{b} f(t) d t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) d t\right] \mathbf{j}+\left[\int_{a}^{b} h(t) d t\right] k .
$$

The antiderivative of a vector-valued function is a family of vector-valued functions all differing by $\qquad$ .

What you should learn
How to integrate a vector-valued function

## Section 12.3 Velocity and Acceleration

Objective: In this lesson you learned how to describe the velocity and acceleration associated with a vector-valued function and how to use a vector-valued function to analyze projectile motion.
I. Velocity and Acceleration (Pages 850-853)

If $x$ and $y$ are twice-differentiable function of $t$, and $\mathbf{r}$ is a vectorvalued function given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$, then the velocity vector, acceleration vector, and speed at time $t$ are as follows.

Course Number

Instructor

Date

What you should learn
How to describe the velocity and acceleration associated with a vectorvalued function

1. Velocity $=\mathbf{v}(t)=$ $\qquad$ .
2. Acceleration $=\mathbf{a}(t)=$ $\qquad$ .
3. Speed $=\|\mathbf{v}(t)\|=$

List the corresponding definitions for velocity, acceleration, and speed along a space curve given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$.

Example 1: Find the velocity vector and acceleration vector of a particle that moves along the plane curve $C$ given by $\mathbf{r}(t)=\cos t \mathbf{i}-2 t \mathbf{j}$.

## II. Projectile Motion (Pages 854-855)

Neglecting air resistance, the path of a projectile launched from an initial height $h$ with initial speed $v_{0}$ and angle of elevation $\theta$ is

What you should learn
How to use a vectorvalued function to analyze projectile motion described by the vector function
where $g$ is the acceleration due to gravity.

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 12.4 Tangent Vectors and Normal Vectors

Objective: In this lesson you learned how to find tangent vectors and normal vectors.

Course Number

Instructor

Date

What you should learn How to find a unit tangent vector at a point on a space curve

Recall that a curve is smooth on an interval if $\qquad$
$\qquad$ . So,
"smoothness" is sufficient to guarantee that $\qquad$
$\qquad$

The tangent line to a curve at a point is $\qquad$ -

Let $C$ be a smooth curve represented by $\mathbf{r}$ on an open interval $I$. If $\mathbf{T}^{\prime}(t) \neq \mathbf{0}$, then the principal unit normal vector at $t$ is defined to be $\qquad$ .

## II. Tangential and Normal Components of Acceleration (Pages 862-865)

For an object traveling at a constant speed, the velocity and acceleration vectors $\qquad$ For an

What you should learn
How to find the tangential and normal components of acceleration
object traveling at a variable speed, the velocity and acceleration vectors $\qquad$ .

If $\mathbf{r}(t)$ is the position vector for a smooth curve $C$ and $\mathbf{N}(t)$ exists, then the acceleration vector $\mathbf{a}(t)$ lies $\qquad$
$\qquad$ .

If $\mathbf{r}(t)$ is the position vector for a smooth curve $C$ [for which $\mathbf{N}(t)$ exists], then the tangential component of acceleration $a_{\mathrm{T}}$ and the normal component of acceleration $a_{\mathrm{N}}$ are as follows.

## $a_{\mathrm{T}}=$

$a_{\mathrm{N}}=$

Note that $a_{\mathrm{N}} \geq 0$. The normal component of acceleration is also called the $\qquad$ .

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 12.5 Arc Length and Curvature

Objective: In this lesson you learned how to find the arc length and curvature of a curve.

Course Number Instructor

Date
I. Arc Length and Curvature (Pages 869-870)

If $C$ is a smooth curve given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$, on an interval $[a, b]$, then the arc length of $C$ on the interval is

Example 1: Find the arc length of the curve given by

$$
\mathbf{r}(t)=\sin t \mathbf{i}-2 t \mathbf{j}+t^{2} \mathbf{k}, \text { from } t=0 \text { to } t=4
$$

II. Arc Length Parameter (Pages 870-871)

Let $C$ be a smooth curve given by $\mathbf{r}(t)$ defined on the closed interval $[a, b]$. For $a \leq t \leq b$, the arc length function is given by

What you should learn How to find a unit tangent vector at a point on a space curve

What you should learn How to find the tangential and normal components of acceleration

The arc length $s$ is called the $\qquad$ .

If $C$ is a smooth curve given by $\mathbf{r}(s)=x(s) \mathbf{i}+y(s) \mathbf{j}$ or $\mathbf{r}(s)=x(s) \mathbf{i}+y(s) \mathbf{j}+z(s) \mathbf{k}$ where $s$ is the arc length parameter, then $\qquad$ Moreover, if $t$ is any parameter for the vector-valued function $\mathbf{r}$ such that $\left\|\mathbf{r}^{\prime}(t)\right\|=1$, then $t$ $\qquad$ .

## III. Curvature (Pages 872-875)

Curvature is the measure of $\qquad$
What you should learn How to find the tangential and normal components of acceleration

Let $C$ be a smooth curve (in the plane or in space) given by $\mathbf{r}(s)$, where $s$ is the arc length parameter. The curvature $K$ at $s$ is given by

Describe the curvature of a circle.

If $C$ is a smooth curve given by $\mathbf{r}(t)$, then two additional formulas for finding the curvature $K$ of $C$ at $t$ are
$K=$ $\qquad$ , or
$K=$ $\qquad$

If $C$ is the graph of a twice-differentiable function given by $y=f(x)$, then the curvature $K$ at the point $(x, y)$ is given by
$K=$ $\qquad$

Let $C$ be a curve with curvature $K$ at point $P$. The circle passing through point $P$ with radius $r=1 / K$ is called the circle of curvature if $\qquad$
$\qquad$ . The radius is called the $\qquad$
$\qquad$ at $P$, and the center of the circle is called the $\qquad$ .

If $\mathbf{r}(t)$ is the position vector for a smooth curve $C$, then the acceleration vector is given by
, where $K$ is the curvature
of $C$ and $d s / d t$ is the speed.
IV. Application (Pages 876-877)

A moving object with mass $m$ is in contact with a stationary object. The total force required to produce an acceleration a along a given path is

What you should learn How to find the tangential and normal components of acceleration

The portion of this total force that is supplied by the stationary object is called the $\qquad$ .

## Additional notes

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Chapter 13 Functions of Several Variables

Section 13.1 Introduction to Functions of Several Variables

Objective: In this lesson you learned how to sketch a graph, level curves, and level surfaces.

Important Vocabulary Define each term or concept.
Function of two variables

Domain of a function of two variables

Range of a function of two variables
I. Functions of Several Variables (Pages 886-887)

For the function given by $z=f(x, y), x$ and $y$ are called the
$\qquad$ and $z$ is called the

What you should learn How to understand the notation for a function of several variables

Example 1: For $f(x, y)=\sqrt{100-2 x^{2}-6 y}$, evaluate $f(3,3)$.

Example 2: For $f(x, y, z)=2 x+5 y^{2}-z^{3}$, evaluate $f(4,3,2)$.
II. The Graph of a Function of Two Variables (Page 888)

The graph of a function $f$ of two variables is $\qquad$
What you should learn How to sketch the graph of a function of two variables
$\qquad$ .

The graph of $z=f(x, y)$ is a surface whose projection onto the $x y$-plane is $\qquad$ . To each point $(x, y)$ in $D$ there corresponds $\qquad$
$\qquad$ , and conversely, to each point $(x, y, z)$ on
the surface there corresponds $\qquad$ .

To sketch a surface in space by hand, it helps to use $\qquad$
$\qquad$
III. Level Curves (Pages 889-891)

A second way to visualize a function of two variables is to use a
$\qquad$ in which the scalar $z=f(x, y)$ is assigned to the point $(x, y)$. A scalar field can be characterized by
$\qquad$ or $\qquad$ along
which the value of $f(x, y)$ is $\qquad$ .

Name a few applications of level curves.

A contour map depicts $\qquad$ . Much
space between level curves indicates that $\qquad$
$\qquad$ , whereas little space indicates $\qquad$
$\qquad$ -.

## What is the Cobb-Douglas production function?

$\qquad$

## What you should learn

 How to sketch level curves for a function of two variablesLet $x$ measure the number of units of labor and let $y$ measure the number of units of capital. Then the number of units produced is modeled by the function

Example 3: A manufacturer estimates that its production (measured in units of a product) can be modeled by $f(x, y)=400 x^{0.3} y^{0.7}$, where the labor $x$ is measured in person-hours and the capital $y$ is measured in thousands of dollars. What is the production level when $x=500$ and $y=200$ ?

## IV. Level Surfaces (Pages 891-892)

The concept of a level curve can be extended by one dimension to define a $\qquad$ If $f$ is a function of three variables and $c$ is a constant, the graph of the equation $f(x, y, z)=c$ is $\qquad$
$\qquad$ .
V. Computer Graphics (Pages 892-893)

The problem of sketching the graph of a surface can be simplified by $\qquad$ -

What you should learn How to sketch level curves for a function of three variables

What you should learn
How to use computer graphs to graph a function of two variables

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 13.2 Limits and Continuity

Objective: In this lesson you learned how to find a limit and determine continuity.

Course Number

Instructor

Date

What you should learn How to understand the definition of a neighborhood in the plane

## What you should learn

 How to understand and use the definition of the limit of a function of two variables$\mathcal{E}>0$ there corresponds $\qquad$ such that
$|f(x, y)-L|<\varepsilon$ whenever $0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta$.

For a function of two variables, the statement $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$
means $\qquad$
$\qquad$ If the
value of $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ is not the same for all possible approaches, or paths, to $\left(x_{0}, y_{0}\right)$, $\qquad$
$\qquad$ ـ.

Example 1: Evaluate $\lim _{(x, y) \rightarrow(4,-1)} \frac{x^{2}+16 y}{3 x-4 y}$.

## III. Continuity of a Function of Two Variables (Pages

 902-903)A function $f$ of two variables is continuous at a point $\left(x_{0}, y_{0}\right)$ in an open region $R$ if $\qquad$

The function $f$ is $\qquad$ if
it is continuous at every point in $R$.

Discuss the difference between removable and nonremovable discontinuities.

If $k$ is a real number and $f$ and $g$ are continuous at $\left(x_{0}, y_{0}\right)$, then the following functions are continuous at $\left(x_{0}, y_{0}\right)$.
1.
2.
3.
4.

What you should learn
How to extend the concept of continuity to a function of two variables

If $h$ is continuous at $\left(x_{0}, y_{0}\right)$ and $g$ is continuous at $h\left(x_{0}, y_{0}\right)$, then the composite function given by $(g \circ h)(x, y)=g(h(x, y))$ is
$\qquad$ .That is,
$\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(h(x, y))=g\left(h\left(x_{0}, y_{0}\right)\right)$.
IV. Continuity of a Function of Three Variables (Page 904)

A function $f$ of three variables is continuous at a point
$\left(x_{0}, y_{0}, z_{0}\right)$ in an open region $R$ if $\qquad$
$\qquad$ -.

That is, $\lim _{(x, y, z) \rightarrow\left(x_{0}, y_{0}, z_{0}\right)} f(x, y, z)=f\left(x_{0}, y_{0}, z_{0}\right)$. The function $f$ is if it is
continuous at every point in $R$.

What you should learn How to extend the concept of continuity to a function of three variables

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 13.3 Partial Derivatives

Objective: In this lesson you learned how to find and use a partial derivative.

Course Number Instructor

Date

## I. Partial Derivatives of a Function of Two Variables

 (Pages 908-911)The process of determining the rate of change of a function $f$

What you should learn How to find and use partial derivatives of a function of two variables with respect to one of its several independent variables is called , and the result is
referred to as the $\qquad$ of $f$ with
respect to the chosen independent variable.

If $z=f(x, y)$, then the first partial derivatives of $f$ with respect to $x$ and $y$ are the functions $f_{x}$ and $f_{y}$, defined by

$$
\begin{aligned}
& f_{x}(x, y)=\lim _{\Delta x \rightarrow 0}- \\
& f_{y}(x, y)=\lim _{\Delta y \rightarrow 0}-
\end{aligned}
$$

provided the limit exists.
This definition indicates that if $z=f(x, y)$, then to find $f_{x}$, you consider $\qquad$
$\qquad$ . Similarly, to find $f_{y}$, you consider $\qquad$ _.

List the equivalent ways of denoting the first partial derivatives of $z=f(x, y)$ with respect to $x$.

List the equivalent ways of denoting the first partial derivatives of $z=f(x, y)$ with respect to $y$.

[^10]The values of the first partial derivatives at the point $(a, b)$ are denoted by

$$
\left.\frac{\partial z}{\partial x}\right|_{(a, b)}=
$$

Example 1: Find $\partial z / \partial x$ for the function

$$
z=20-2 x^{2}+3 x y+5 x^{2} y^{2}
$$

For the function $z=f(x, y)$, if $y=y_{0}$, then $z=f\left(x, y_{0}\right)$
represents the curve formed by intersecting $\qquad$
$\qquad$
partial derivative $f_{x}\left(x_{0}, y_{0}\right)$ represents

Informally, the values of $\partial f / \partial x$ and $\partial f / \partial y$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ denote $\qquad$ , respectively.

Example 2: Find the slope of the surface given by $z=20-2 x^{2}+3 x y+5 x^{2} y^{2}$ at the point $(1,1,26)$ in the $y$-direction.

## II. Partial Derivatives of a Function of Three or More Variables (Pages 911-912)

The function $w=f(x, y, z)$ has $\qquad$ partial
derivatives, each of which is formed by $\qquad$

What you should learn
How to find and use partial derivatives of a function of three or more variables

The partial derivative of $w$ with respect to $x$ is denoted by
$\qquad$ . To find the partial
derivative of $w$ with respect to $x$, consider $\qquad$ to
be constant and differentiate with respect to $\qquad$ .
III. Higher-Order Partial Derivatives (Pages 912-913)

As with ordinary derivatives, it is possible to take $\qquad$ partial derivatives of a function of several variables, provided such derivatives exist. Higher-order derivatives are denoted by $\qquad$ _.

The notation $\frac{\partial^{2} f}{\partial x \partial y}$ indicates to differentiate first with respect to
$\qquad$ and then with respect to $\qquad$ -.

The notation $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$ indicates to differentiate first with respect to $\qquad$ and then with respect to $\qquad$ .

The notation $f_{y x}$ indicates to differentiate first with respect to
$\qquad$ and then with respect to $\qquad$ .

The cases represented in the three examples of notation given above are called $\qquad$ .

Example 3: Find the value of $f_{x y}(2,-3)$ for the function

$$
f(x, y)=20-2 x^{2}+3 x y+5 x^{2} y^{2} .
$$

If $f$ is a function of $x$ and $y$ such that $f_{x y}$ and $f_{y x}$ are continuous on an open disk $R$, then, for every $(x, y)$ in $R$, $f_{x y}(x, y)=$ $\qquad$ . derivatives are denoted by

What you should learn How to find higher-order partial derivatives of a function of two or three variables

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 13.4 Differentials

Objective: In this lesson you learned how to find and use a total differential and determine differentiability.

Course Number Instructor

Date

What you should learn How to understand the concepts of increments and differentials

If $z=f(x, y)$ and $\Delta x$ and $\Delta y$ are increments of $x$ and $y$, then the differentials of the independent variables $x$ and $y$ are $\qquad$
$\qquad$ , and the total differential of the
dependent variable $z$ is
II. Differentiability (Page 919)

A function $f$ given by $z=f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ if $\Delta z$ can be written in the form
where both $\varepsilon_{1}$ and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$. The function $f$ is if it is
differentiable at each point in $R$.

If $f$ is a function of $x$ and $y$, where $f_{x}$ and $f_{y}$ are continuous in an open region $R$, then $f$ is $\qquad$ .
III. Approximation by Differentials (Pages 920-922)

The partial derivatives $\partial z / \partial x$ and $\partial z / \partial y$ can be interpreted as

What you should learn
How to extend the concept of differentiability to a function of two variables

What you should learn
How to use a differential as an approximation

This means that $d z=\frac{\partial z}{\partial x} \Delta x+\frac{\partial z}{\partial y} \Delta y$ represents $\qquad$
$\qquad$
Because a plane in
space is represented by a linear equation in the variables $x, y$, and $z$, the approximation of $\Delta z$ by $d z$ is called a $\qquad$
$\qquad$ .

If a function of $x$ and $y$ is differentiable at $\left(x_{0}, y_{0}\right)$, then $\qquad$ -.

## Homework Assignment

Page(s)
Exercises

# Section 135 Chain Rules for Functions of $\quad$ Course Number <br> Section 13.5 Chain Rules for Functions of Several Variables <br> Objective: In this lesson you learned how to use the Chain Rules and find a partial derivative implicitly. 

## I. Chain Rules for Functions of Several Variables

 (Pages 925-929)Let $w=f(x, y)$, where $f$ is a differentiable function of $x$ and $y$.
The Chain Rule for One Independent Variable states that $\qquad$
$\qquad$
$\qquad$ -

Example 1: Let $w=2 x y+3 x y^{3}$, where $x=1-2 t$ and $y=2 \sin t$. Find $d w / d t$.

Let $w=f(x, y)$, where $f$ is a differentiable function of $x$ and $y$.
The Chain Rule for Two Independent Variables states that $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ .

## II. Implicit Partial Differentiation (Pages 929-930)

If the equation $F(x, y)=0$ defines $y$ implicitly as a

What you should learn How to find partial derivatives implicitly

$$
2+2
$$

differentiable function of $x$, then $\frac{d y}{d x}=$ $\qquad$ $F_{y}(x, y) \neq 0$. If the equation $F(x, y, z)=0$ defines $z$ implicitly as

What you should learn How to use the Chain Rules for functions of several variables
a differentiable function of $x$ and $y$, then
$\frac{\partial z}{\partial x}=$ $\qquad$ , and
$\frac{\partial z}{\partial y}=$ $\qquad$ ,
$F_{z}(x, y, z) \neq 0$.

Example 2: Find $d y / d x$, given $2 x^{2}+x y+y^{2}-x-2 y=0$.

## Homework Assignment

Page(s)
Exercises

## Section 13.6 Directional Derivatives and Gradients

Objective: In this lesson you learned how to find and use a directional derivative and a gradient.

Course Number
Instructor
Date

What you should learn How to find and use directional derivatives of a function of two variables
$D_{\mathbf{u}} f$, is $D_{\mathbf{u}} f(x, y)=\lim _{t \rightarrow 0} \frac{f(x+t \cos \theta, y+t \sin \theta)-f(x, y)}{t}$,
provided this limit exists.

A simpler working formula for finding a directional derivative states that if $f$ is a differentiable function of $x$ and $y$, then the directional derivative of $f$ in the direction of the unit vector $\mathbf{u}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}$ is $\qquad$

## II. The Gradient of a Function of Two Variables

 (Pages 936-937)Let $z=f(x, y)$ be a function of $x$ and $y$ such that $f_{x}$ and $f_{y}$ exist. Then the gradient of $\boldsymbol{f}$, denoted by $\qquad$ , is the vector $\qquad$ -.

Note that for each $(x, y)$, the gradient $\nabla f(x, y)$ is a vector in

If $f$ is a differentiable function of $x$ and $y$, then the directional derivative of $f$ in the direction of the unit vector $\mathbf{u}$ is
$\qquad$ .

## III. Applications of the Gradient (Pages 937-940)

In many applications, you may want to know in which direction to move so that $f(x, y)$ increases most rapidly. This direction is

What you should learn How to use the gradient of a function of two variables in applications
called $\qquad$
and it is given by the $\qquad$ .

Let $f$ be differentiable at the point $(x, y)$. State three properties of the gradient at that point.
1.
2.
3.

If $f$ is differentiable at $\left(x_{0}, y_{0}\right)$ and $\nabla f\left(x_{0}, y_{0}\right) \neq \mathbf{0}$, then $\nabla f\left(x_{0}, y_{0}\right)$ is

## IV. Functions of Three Variables (Page 941)

Let $f$ be a function of $x, y$, and $z$, with continuous first partial derivatives. The directional derivative of $\boldsymbol{f}$ in the direction of a unit vector $\mathbf{u}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ is given by

What you should learn
How to find directional derivatives and gradients of functions of three variables

The gradient of $\boldsymbol{f}$ is defined to be $\qquad$ .

Properties of the gradient are as follows.
1.
2.
3.
4.

## Homework Assignment <br> Page(s)

Exercises

## Section 13.7 Tangent Planes and Normal Lines

Objective: In this lesson you learned how to find and use a directional derivative and a gradient.

Course Number

Instructor

Date
I. Tangent Plane and Normal line to a Surface (Pages 945-949)

For a surface $S$ given by $z=f(x, y)$, you can convert to the general form by defining $F$ as $F(x, y, z)=$ $\qquad$ .

Because $f(x, y)-z=0$, you can consider $S$ to be $\qquad$ .

Example 1: For the function given by
$F(x, y, z)=12-3 x^{2}+y^{2}-4 z^{2}$, describe the level surface given by $F(x, y, z)=0$.

Let $F$ be differentiable at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ on the surface $S$ given by $F(x, y, z)=0$ such that $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$.

1. The plane through $P$ that is normal to $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is called
$\qquad$ .
2. The line through $P$ having the direction of $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is called $\qquad$ .

If $F$ is differentiable at $\left(x_{0}, y_{0}, z_{0}\right)$, then an equation of the tangent plane to the surface given by $F(x, y, z)=0$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is

To find the equation of the tangent plane at a point on a surface given by $z=f(x, y)$, you can define the function $F$ by $F(x, y, z)=f(x, y)-z$. Then $S$ is given by the level surface $F(x, y, z)=0$, and an equation of the tangent plane to $S$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is

What you should learn
How to find equations of tangent planes and normal lines to surfaces
II. The Angle of Inclination of a Plane (Pages 949-950)

Another use of the gradient $\nabla F(x, y, z)$ is $\qquad$
$\qquad$ -.
The angle of inclination of a plane is defined to be $\qquad$
$\qquad$ . The angle of inclination of a horizontal plane is defined to be $\qquad$ . Because the vector $\mathbf{k}$ is normal to the $x y$-plane, you can use the formula for the cosine of the angle between two planes to conclude that the angle of inclination of a plane with normal vector $\mathbf{n}$ is given by $\qquad$

## III. A Comparison of the Gradients $\nabla f(x, y)$ and $\nabla F(x, y, z)$ (Page 950)

If $F$ is differentiable at $\left(x_{0}, y_{0}, z_{0}\right)$ and $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, then $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is $\qquad$ to the level surface through $\left(x_{0}, y_{0}, z_{0}\right)$.
$\qquad$ .

What you should learn
How to find the angle of inclination of a plane in space

When working with the gradients $\nabla f(x, y)$ and $\nabla F(x, y, z)$, be sure to remember that $\nabla f(x, y)$ is a vector in $\qquad$ and $\nabla F(x, y, z)$ is a vector in $\qquad$ .

## Homework Assignment

Page(s)
Exercises

## Section 13.8 Extrema of Functions of Two Variables

Objective: In this lesson you learned how to find absolute and relative extrema.

Course Number Instructor Date
I. Absolute Extrema and Relative Extrema (Pages 954-956)

Let $f$ be a continuous function of two variables $x$ and $y$ defined on a closed bounded region $R$ in the $x y$-plane. The Extreme Value Theorem states that $\qquad$
$\qquad$
$\qquad$

Let $f$ be a function defined on a region $R$ containing $\left(x_{0}, y_{0}\right)$. The function $f$ has a relative maximum at $\left(x_{0}, y_{0}\right)$ if $\qquad$

The function $f$ has a relative minimum $\left(x_{0}, y_{0}\right)$ if $\qquad$ .

To say that $f$ has a relative maximum at $\left(x_{0}, y_{0}\right)$ means that the point $\left(x_{0}, y_{0}, z_{0}\right)$ is $\qquad$ -.

Let $f$ be defined on an open region $R$ containing $\left(x_{0}, y_{0}\right)$. The point $\left(x_{0}, y_{0}\right)$ is a critical point of $f$ if one of the following is true.
1.
2.

If $f$ has a relative extremum at $\left(x_{0}, y_{0}\right)$ on an open region $R$, then $\left(x_{0}, y_{0}\right)$ is a $\qquad$ .

Example 1: Find the relative extrema of

$$
f(x, y)=3 x^{2}+2 y^{2}-36 x+24 y-9
$$

What you should learn
How to find absolute and relative extrema of a function of two variables
II. The Second Partials Test (Pages 957-959)

The critical points of a function of two variables do not always yield relative maximum or relative minima. Some critical points yield $\qquad$ , which are neither
relative maxima nor relative minima.

For the Second-Partials Test for Relative Extrema, let $f$ have continuous second partial derivatives on an open region containing $(a, b)$ for which $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$. To test for relative extrema of $f$, consider the quantity

$$
d=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2} .
$$

1. If $d>0$ and $f_{x x}(a, b)>0$, then $f$ has $\qquad$ .
2. If $d>0$ and $f_{x x}(a, b)<0$, then $f$ has $\qquad$
$\qquad$ -.
3. If $d<0$, then $\qquad$ .
4. If $d=0$, then $\qquad$ .

## Homework Assignment

## Page(s)

Exercises

# Section 13.9 Applications of Extrema of Functions of Two Variables 

Objective: In this lesson you learned how to solve an optimization

Course Number Instructor

Date
I. Applied Optimization Problems (Pages 962-963)

Give an example of a real-life situation in which extrema of functions of two variables play a role.

Describe the process used to optimize the function of two or more variables.

In many applied problems, the domain of the function to be optimized is a closed bounded region. To find minimum or maximum points, you must not only test critical points, but also
$\qquad$ _.
II. The Method of Least Squares (Pages 964-966)

In constructing a model to represent a particular phenomenon, the goals are $\qquad$ .

As a measure of how well the model $y=f(x)$ fits the collection of points $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, $\qquad$ This sum is called the and is given by
$\qquad$

What you should learn
How to solve optimization problems involving functions of several variables

What you should learn
How to use the method of least squares
. Graphically, $S$ can be
interpreted as $\qquad$
$\qquad$ . If the model is a perfect fit, then
$S=$ $\qquad$ However, when a perfect fit is not feasible, you can settle for a model that $\qquad$ .

The linear model that minimizes $S$ is called $\qquad$ —.

The least squares regression line for $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right.$, $\left.\left(x_{n}, y_{n}\right)\right\}$ is given by $\qquad$ , where
$a=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}$ and $b=\frac{1}{n}\left(\sum_{i=1}^{n} y_{i}-a \sum_{i=1}^{n} x_{i}\right)$.

Example 1: Find the least squares regression line for the data in the table.

| $x$ | 1 | 3 | 4 | 8 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 16 | 21 | 24 | 27 | 29 | 33 |

Homework Assignment
Page(s)
Exercises

## Section 13.10 Lagrange Multipliers

Objective: In this lesson you learned how to solve a constrained optimization problem using a Lagrange multiplier.

Course Number

Instructor

Date
I. Lagrange Multipliers (Pages 970-971)

The $\qquad$ offers a way
to solve constrained optimization problems.

Let $f$ and $g$ have continuous first partial derivatives such that $f$ has an extremum at a point $\left(x_{0}, y_{0}\right)$ on the smooth constraint curve $g(x, y)=c$. Lagrange's Theorem states that if $\nabla g\left(x_{0}, y_{0}\right) \neq \mathbf{0}$, then there is a real number $\lambda$ such that $\qquad$ -

The scalar $\lambda$, the lowercase Greek letter lambda, is called a
$\qquad$ .

Let $f$ and $g$ satisfy the hypothesis of Lagrange's Theorem, and let $f$ have a minimum or maximum subject to the constraint $g(x, y)=c$. To find the minimum or maximum of $f$, use the following steps.
1.
2.
II. Constrained Optimization Problems (Pages 972-974)

Economists call the Lagrange multiplier obtained in a production function the $\qquad$ which tells the number of additional units of product that can be produced if one additional dollar is spent on production.

## III. The Method of Lagrange Multipliers with Two

 Constraints (Page 975)For an optimization problem involving two constraint functions $g$ and $h$, you need to introduce $\qquad$ , and then solve the equation
$\qquad$

## What you should learn

How to use Lagrange multipliers to solve constrained optimization problems

## What you should learn

How to use the Method of Lagrange Multipliers with two constraints
$\qquad$

## Homework Assignment

Page(s)
Exercises

## Chapter 14 Multiple Integration

## Section $14.1 \quad$ Iterated Integrals and Area in the Plane

Course Number

Instructor

Date
I. Iterated Integrals (Pages 984-985)

To extend definite integrals to functions of several variables, you can apply the Fundamental Theorem of Calculus to one variable while $\qquad$

An "integral of an integral" is called $a(n)$ $\qquad$ The $\qquad$ limits of integration can be variable with respect to the outer variable of integration. The
$\qquad$ limits of integration must be constant with respect to both variables of integration. The limits of integration for an iterated integral identify two sets of boundary intervals for the variables, which determine the $\qquad$
$\qquad$ of the iterated integral.

Example 1: Evaluate $\int_{-3}^{0} \int_{0}^{y}(6 x-2 y) d x d y$.

## II. Area of a Plane Region (Pages 986-989)

One of the applications of the iterated integral is $\qquad$ _.

When setting up a double integral to find the area of a region in a plane, placing a representative rectangle in the region $R$ helps determine both $\qquad$ .

A vertical rectangle implies the order $\qquad$ , with the inside limits corresponding to the $\qquad$
This type of region is

What you should learn
How to evaluate an iterated integral

What you should learn How to use an iterated integral to find the area of a plane region
called $\qquad$ because the
outside limits of integration represent the $\qquad$ . Similarly, a horizontal
rectangle implies the order $\qquad$ with the
inside limits corresponding to the $\qquad$ . This type of region is called $\qquad$
$\qquad$ , because the outside limits represent
the $\qquad$ -.

Example 2: Use a double integral to find the area of a rectangular region for which the bounds for $x$ are $-6 \leq x \leq 1$ and the bound for $y$ are $-3 \leq y \leq 8$.

## Homework Assignment

Page(s)
Exercises

## Section 14.2 Double Integrals and Volume

Objective: In this lesson you learned how to use a double integral to find the volume of a solid region.

Course Number Instructor

Date

## I. Double Integrals and Volume of a Solid Region (Pages 992-994)

If $f$ is defined on a closed, bounded region $R$ in the $x y$-plane, then the $\qquad$ is given by
$\iint_{R} f(x, y) d A=\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) \Delta A_{i}$, provided the limit exists. If the limit exists, then $f$ is $\qquad$ over $R$.

A double integral can be used to find the volume of a solid region that lies between $\qquad$ .

If $f$ is integrable over a plane region $R$ and $f(x, y) \geq 0$ for all $(x, y)$ in $R$, then the volume of the solid region that lies above $R$ and below the graph of $f$ is defined as

## II. Properties of Double Integrals (Page 994)

Let $f$ and $g$ be continuous over a closed, bounded plane region $R$, and let $c$ be a constant.

What you should learn How to use a double integral to represent the volume of a solid region

What you should learn How to use properties of double integrals

1. $\iint_{R} c f(x, y) d A=\iint_{R}$
2. $\iint_{R}[f(x, y) \pm g(x, y)] d A=\iint_{R} \square \int_{R} \square$
3. $\iint_{R} f(x, y) d A \geq 0$, if $\qquad$
4. $\iint_{R} f(x, y) d A \geq \iint_{R} g(x, y) d A$, if $\qquad$
5. $\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A$, where $R$ is $\qquad$
III. Evaluation of Double Integrals (Pages 995-999)

Normally, the first step in evaluating a double integral is $\qquad$
What you should learn How to evaluate a double integral as an iterated integral

Explain the meaning of Fubini's Theorem.

In your own words, explain how to find the volume of a solid.
IV. Average Value of a Function (Pages 999-1000)

If $f$ is integrable over the plane region $R$, then the $\qquad$ is $\frac{1}{A} \iint_{R} f(x, y) d A$, where $A$ is the

What you should learn
How to find the average value of a function over a region
area of $R$.
Homework Assignment
Page(s)
Exercises

## Section 14.3 Change of Variables: Polar Coordinates

Objective: In this lesson you learned how to write and evaluate double integrals in polar coordinates.

Course Number Instructor Date
I. Double Integrals in Polar Coordinates (Pages 1004-1008)

Some double integrals are much easier to evaluate in $\qquad$ than in rectangular form, especially for regions

What you should learn How to write and evaluate double integrals in polar coordinates such as $\qquad$ .

A polar sector is defined as $\qquad$
$\qquad$ .

Let $R$ be a plane region consisting of all points $(x, y)=$ $(r \cos \theta, r \sin \theta)$ satisfying the conditions $0 \leq g_{1}(\theta) \leq r \leq g_{2}(\theta)$, $\alpha \leq \theta \leq \beta$, where $0 \leq(\beta-\alpha) \leq 2 \pi$. If $g_{1}$ and $g_{2}$ are continuous on $[\alpha, \beta]$ and $f$ is continuous on $R$, then

If $z=f(x, y)$ is nonnegative on $R$, then the integral $\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta$ can be interpreted as the volume of $\qquad$ .

## Additional notes



## Homework Assignment

Page(s)
Exercises

## Section 14.4 Center of Mass and Moments of Inertia

Objective: In this lesson you learned how to find the mass of a planar lamina, the center of mass of a planar lamina, and moments of inertia using double integrals.

Course Number

Instructor

Date
I. Mass (Pages 1012-1013)

If $\rho$ is a continuous density function on the lamina (of variable density) corresponding to a plane region $R$, then the mass $m$ of the lamina is given by

For a planar lamina, density is expressed as $\qquad$
$\qquad$ .
II. Moments and Center of Mass (Pages 1014-1015)

Let $\rho$ be a continuous density function on the planar lamina $R$.
The moments of mass with respect to the $x$ - and $y$-axes are
$M_{x}=$ $\qquad$
$M_{y}=$ $\qquad$ . If $m$ is the mass of the
lamina, then the center of mass is

If $R$ represents a simple plane region rather than a lamina, the point $(\bar{x}, \bar{y})$ is called the $\qquad$ of the region.
III. Moments of Inertia (Pages 1016-1017)

The moments $M_{x}$ and $M_{y}$ used in determining the center of mass of a lamina are sometimes called the $\qquad$ about the $x$ - and $y$-axes. In each case, the moment is the product

## What you should learn

How to find the mass of a planar lamina using a double integral

What you should learn How to find the center of mass of a planar lamina using double integrals

What you should learn How to find moments of inertia using double integrals
of $\qquad$ . The second
moment, or the moment of inertia of a lamina about a line, is a measure of $\qquad$
. These second moments
are denoted $I_{x}$ and $I_{y}$, and in each case the moment is the product
of $\qquad$ .
$I_{x}=$ and
$I_{y}=$ . The sum of the
moments $I_{x}$ and $I_{y}$ is called the and
is denoted by $I_{0}$.

The moment of inertia $I$ of a revolving lamina can be used to measure its $\qquad$ , which is given by
$\qquad$ , where $\omega$ is the angular speed, in radians per second, of the planar lamina as it revolves about a line.

The radius of gyration $\overline{\bar{r}}$ of a revolving mass $m$ with moment
of inertia $I$ is defined to be

## Homework Assignment

Page(s)
Exercises

## Section 14.5 Surface Area

Objective: In this lesson you learned how to use a double integral to find the area of a surface.

Course Number Instructor Date
I. Surface Area (Pages 1020-1024)

If $f$ and its first partial derivatives are continuous on the closed region $R$ in the $x y$-plane, then the area of the surface $\boldsymbol{S}$ given by $z=f(x, y)$ over $R$ is given by:

What you should learn How to use a double integral to find the area of a surface

List several strategies for performing the often difficult integration involved in finding surface area.

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 14.6 Triple Integrals and Applications

Objective: In this lesson you learned how to use a triple integral to find the volume, center of mass, and moments of inertia of a solid region.

Course Number Instructor

Date
I. Triple Integrals (Pages 1027-1031)

Consider a function $f$ of three variables that is continuous over a bounded solid region $Q$. Then, encompass $Q$ with a network of

What you should learn
How to use a triple integral to find the volume of a solid region boxes and form the $\qquad$ consisting of all boxes lying entirely within $Q$. The norm $\|\Delta\|$ of the partition is $\qquad$
$\qquad$ .

If $f$ is continuous over a bounded solid region $Q$, then the triple integral of $\boldsymbol{f}$ over $\boldsymbol{Q}$ is defined as
, provided
the limit exists. The volume of the solid region $Q$ is given by
$\qquad$

Let $f$ be continuous on a solid region $Q$ defined by $a \leq x \leq b$, $h_{1}(x) \leq y \leq h_{2}(x)$, and $g_{1}(x, y) \leq z \leq g_{2}(x, y)$, where $h_{1}, h_{2}, g_{1}$, and $g_{2}$ are continuous functions. Then,

To evaluate a triple iterated integral in the order $d z d y d x$, $\qquad$
$\qquad$
$\qquad$
$\qquad$ .

Describe the process for finding the limits of integration for a triple integral.

## II. Center of Mass and Moments of Inertia <br> (Pages 1032-1034)

Consider a solid region $Q$ whose density is given by the density

What you should learn
How to find the center of mass and moments of inertia of a solid region function $\rho$. The center of mass of a solid region $Q$ of mass $m$ is given by $(\bar{x}, \bar{y}, \bar{z})$ where

```
m=
Myz
Mxz}
Mxy
    \overline{x}=
    \overline{y}=
    L
\overline{z}}
```

The quantities $M_{y z}, M_{x z}$, and $M_{x y}$ are called the $\qquad$
$\ldots$ of the region $Q$ about the $y z-, x z-$, and $x y$ -
planes, respectively. The first moments for solid regions are
taken about a plane, whereas the second moments for solids are
taken about a $\qquad$ . The second moments
(or moments of inertia) about the $x$-, $y$-, and $z$-axes are as
follows.

Moment of inertia about the $x$-axis: $I_{x}=$
$=$

Moment of inertia about the $y$-axis: $I_{y}=$ $\qquad$

Moment of inertia about the $z$-axis: $I_{z}=$

For problems requiring the calculation of all three moments, considerable effort can be saved by applying the additive property of triple integrals and writing
where
$I_{x y}=$
$I_{x z}=$
$I_{y z}=$

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 14.7 Triple Integrals in Cylindrical and Spherical Coordinates

Objective: In this lesson you learned how to write and evaluate

Course Number Instructor

Date triple integrals in cylindrical and spherical coordinates.
I. Triple Integrals in Spherical Coordinates (Pages 1038-1040)

The rectangular conversion equations for cylindrical coordinates

What you should learn How to write and evaluate a triple integral in cylindrical coordinates
are $x=$ $\qquad$ , $y=$ $\qquad$ , and
$z=$ $\qquad$ .

If $f$ is a continuous function on the solid $Q$, the iterated form of the triple integral in cylindrical form is

To visualize a particular order of integration, it helps to view the iterated integral in terms of $\qquad$
$\qquad$
For instance, in the order $d r d \theta d z$, the first integration occurs
$\qquad$
$\qquad$
$\qquad$

## II. Triple Integrals in Spherical Coordinates

 (Pages 1041-1042)The rectangular conversion equations for spherical coordinates

## What you should learn

How to write and evaluate a triple integral in spherical coordinates are $x=$ $\qquad$ , $y=$ $\qquad$ , and $z=$ $\qquad$ .

The triple integral in spherical coordinates for a continuous function $f$ defined on the solid region $Q$ is given by

As with cylindrical coordinates, you can visualize a particular order of integration by $\qquad$ —
$\qquad$
$\qquad$

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 14.8 Change of Variables: Jacobians

Objective: In this lesson you learned how to use a Jacobian to change variables in a double integral.

Course Number Instructor Date

What you should learn How to understand the concept of a Jacobian

In general, a change of variables is given by a one-to-one transformation $T$ from a region $S$ in the $u v$-plane to a region $R$ in the $x y$-plane, to be given by $\qquad$ , where $g$ and $h$ have continuous first partial derivatives in the region $S$. In most cases, you are hunting for a transformation in which $\qquad$ .

## II. Change of Variables for Double Integrals (Pages 1047-1049)

Let $R$ be a vertically or horizontally simple region in the $x y$ plane, and let $S$ be a vertically or horizontally simple region in the $u v$-plane. Let $T$ from $S$ to $R$ be given by $T(u, v)=(x, y)=$ $(g(u, v), h(u, v))$, where $g$ and $h$ have continuous first partial derivatives. Assume that $T$ is one-to-one except possibly on the boundary of $S$. If $f$ is continuous on $R$, and $\partial(x, y) / \partial(u, v)$ is nonzero on $S$, then

What you should learn
How to use a Jacobian to change variables in a double integral

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Chapter 15 Vector Analysis

## Section $15.1 \quad$ Vector Fields

Objective: In this lesson you learned how to sketch a vector field, determine whether a vector field is conservative, find a potential function, find curl, and find divergence.
I. Vector Fields (Pages 1058-1061)

A vector field over a plane region $\boldsymbol{R}$ is $\qquad$

A vector field over a solid region $Q$ in space is $\qquad$ .

A vector field $\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$ is continuous at a point if and only if $\qquad$ .

List some common physical examples of vector fields and give a brief description of each.

Let $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ be a position vector. The vector field $\mathbf{F}$ is an inverse square field if
, where $k$ is a real number
and $\mathbf{u}=\mathbf{r} /\|\mathbf{r}\|$ is a unit vector in the direction of $\mathbf{r}$.

Because vector fields consist of infinitely many vectors, it is not possible to create a sketch of the entire field. Instead, when you sketch a vector field, your goal is to $\qquad$
$\qquad$
II. Conservative Vector Fields (Pages 1061-1063)

The vector field $\mathbf{F}$ is called conservative if $\qquad$ . The
function $f$ is called the $\qquad$ for $\mathbf{F}$.

Let $M$ and $N$ have continuous first partial derivatives on an open disk $R$. The vector field given by $\mathbf{F}(x, y)=M \mathbf{i}+N \mathbf{j}$ is conservative if and only if $\qquad$
III. Curl of a Vector Field (Pages 1064-1065)

The curl of a vector field $\mathbf{F}(x, y, z)=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is

If $\operatorname{curl} \mathbf{F}=\mathbf{0}$, then $\mathbf{F}$ is said to be $\qquad$ .

The cross product notation use for curl comes from viewing the gradient $\nabla f$ as the result of the $\qquad$ acting on the function $f$.

The primary use of curl is in a test for conservative vector fields in space. The test states $\qquad$
$\qquad$ .

## What you should learn

How to determine whether a vector field is conservative

## What you should learn

How to find the curl of a vector field

## IV. Divergence of a Vector Field (Page 1066)

The curl of a vector field $\mathbf{F}$ is itself $\qquad$ .
Another important function defined on a vector field is

What you should learn How to find the divergence of a vector field
divergence, which is $\qquad$ .

The divergence of $\mathbf{F}(x, y)=M \mathbf{i}+N \mathbf{j}$ is

The divergence of $\mathbf{F}(x, y, z)=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is

If $\operatorname{div} \mathbf{F}=0$, then $\mathbf{F}$ is said to be $\qquad$ .

Divergence can be viewed as $\qquad$
$\qquad$
$\qquad$
$\qquad$ -

If $\mathbf{F}(x, y, z)=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is a vector field and $M, N$, and $P$ have continuous second partial derivatives, then $\qquad$ .

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 15.2 Line Integrals

Objective: In this lesson you learned how to find a piecewise smooth parametrization, and write and evaluate a line integral.
I. Piecewise Smooth Curves (Page 1069)

A plane curve $C$ given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, a \leq t \leq b$, is smooth if $\qquad$
$\qquad$ A space
curve C given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, a \leq t \leq b$, is smooth if $\qquad$
$\qquad$ A curve $C$ is piecewise smooth if $\qquad$
$\qquad$
$\qquad$ .
II. Line Integrals (Pages 1070-1073)

If $f$ is defined in a region containing a smooth curve $C$ of finite length, then the line integral of $\boldsymbol{f}$ along $\boldsymbol{C}$ is given by

> for a plane
or by
for space, provided this limit exists.

Let $f$ be continuous in a region containing a smooth curve $C$. If $C$ is given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$, where $a \leq t \leq b$, then

If $C$ is given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$, where $a \leq t \leq b$, then

If $f(x, y, z)=1$, the line integral gives $\qquad$
$\qquad$ $-$
III. Line Integrals of Vector Fields (Pages 1074-1076)

Let $\mathbf{F}$ be a continuous vector field defined on a smooth curve $C$ given by $\mathbf{r}(t), a \leq t \leq b$. The line integral of $\mathbf{F}$ on $C$ is given by

## What you should learn <br> How to write and evaluate a line integral of a vector field

What you should learn How to write and evaluate a line integral in differential form form as $\qquad$ .

## Homework Assignment

Page(s)
Exercises

| Section 15.3 | Conservative Vector Fields and Independence <br> of Path | Course Number <br> Instructor <br> Date |
| :--- | :--- | :--- |
| Objective: $\quad$In this lesson you learned how to use the Fundamental <br> Theorem of Line Integrals, independence of path, and <br> conservation of energy. | I. Fundamental Theorem of Line Integrals <br> (Pages 1083-1085) |  |
| Let $C$ be a piecewise smooth curve lying in an open region $R$ and  <br> given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, a \leq t \leq b$. The Fundamental What you should learn <br> How to understand and <br> use the Fundamental <br> Theorem of Line <br> Integrals |  |  |

Theorem of Line Integrals states that if $\mathbf{F}(x, y)=M \mathbf{i}+N \mathbf{j}$ is conservative in $R$, and $M$ and $N$ are continuous in $R$, then
where $f$ is a potential function of $\mathbf{F}$. That is, $\mathbf{F}(x, y)=\nabla f(x, y)$.

The Fundamental Theorem of Line Integrals states that $\qquad$
II. Independence of Path (Pages 1086-1088)

Saying that the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path

What you should learn How to understand the concept of independence of path
means that $\qquad$
$\qquad$
$\qquad$

If $\mathbf{F}$ is continuous on an open connected region, then the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path if and only if $\qquad$
$\qquad$ .

A curve $C$ given by $\mathbf{r}(t)$ for $a \leq t \leq b$ is closed if
$\qquad$ .

Let $\mathbf{F}(x, y, z)=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ have continuous first partial derivatives in an open connected region $R$, and let $C$ be a piecewise smooth curve in $R$. The following conditions are equivalent.
1.
2.
3.
III. Conservation of Energy (Page 1089)

State the Law of Conservation of Energy.

What you should learn
How to understand the concept of conservation of energy

The kinetic energy of a particle of mass $m$ and speed $v$ is
$\qquad$ -.

The potential energy $p$ of a particle at point $(x, y, z)$ in a conservative vector field $\mathbf{F}$ is defined as $\qquad$ , where $f$ is the potential function for $\mathbf{F}$.

## Homework Assignment

Page(s)
Exercises

## Section 15.4 Green's Theorem

Objective: In this lesson you learned how to evaluate a line integral using Green's Theorem.

Course Number Instructor

Date
I. Green's Theorem (Pages 1093-1098)

A curve $C$ given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$, where $a \leq t \leq b$, is simple if $\qquad$ -that is, $\mathbf{r}(c) \neq \mathbf{r}(d)$ for all $c$ and $d$ in the open interval $(a, b)$. A plane region $R$ is simply connected if $\qquad$ .

Let $R$ be a simply connected region with a piecewise smooth boundary $C$, oriented counterclockwise (that is, $C$ is traversed once so that the region $R$ always lies to the left). Then Green's Theorem states that if $M$ and $N$ have continuous first partial derivatives in an open region containing $R$, then

## Line Integral for Area

If $R$ is a plane region bounded by a piecewise smooth simple closed curve $C$, oriented counterclockwise, then the area of $R$ is given by

## II. Alternative Forms of Green's Theorem (Pages 1098-1099)

With appropriate condition on $\mathbf{F}, C$, and $R$, you can write Green's Theorem in the following vector form

What you should learn How to use Green's Theorem to evaluate a line integral

What you should learn
How to use alternative forms of Green's Theorem

[^11]For the second vector form of Green's Theorem, assume the same conditions for $\mathbf{F}, C$, and $R$. Using the arc length parameter $s$ for $C$, you have $\qquad$ . So, a unit
tangent vector $\mathbf{T}$ to curve $C$ is given by

> . The outward unit
normal vector $\mathbf{N}$ can then be written as
. The second alternative form
of Green's Theorem is given by

## Homework Assignment

Page(s)
Exercises

## Section 15.5 Parametric Surfaces

Objective: In this lesson you learned how to sketch a parametric surface, find a set of parametric equations to represent a surface, find a normal vector, find a tangent plane, and find the area of a parametric surface.
I. Parametric Surfaces (Pages 1102-1103)

Let $x, y$, and $z$ be functions of $u$ and $v$ that are continuous on a domain $D$ in the $u v$-plane. The set of points $(x, y, z)$ given by $\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}$ is called a $\qquad$
$\qquad$ The equations $x=x(u, v), y=y(u, v)$, and $z=z(u, v)$ are the $\qquad$ for the surface.

If $S$ is a parametric surface given by the vector-valued function $\mathbf{r}$, then $S$ is traced out by $\qquad$ .

## II. Finding Parametric Equations for Surfaces (Page 1104)

Writing a set of parametric equations for a given surface is generally more difficult than identifying the surface described by a given set of parametric equations. One type of surface for which this problem is straightforward, however is the surface given by $z=f(x, y)$. You can parameterize such a surface as
III. Normal Vectors and Tangent Planes (Pages 1105-1106)

Let $S$ be a smooth parametric surface
$\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}$ defined over an open region $D$ in the $u v$-plane. Let $\left(u_{0}, v_{0}\right)$ be a point in $D$. A normal vector at

Course Number

Instructor

Date

What you should learn
How to understand the definition of a parametric surface, and sketch the surface

## What you should learn

How to find a set of parametric equations to represent a surface
IV. Area of a Parametric Surface (Pages 1106-1108)

Let $S$ be a smooth parametric surface
$\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}$ defined over an open region
$D$ in the $u v$-plane. If each point on the surface $S$ corresponds to exactly one point in the domain $D$, then the surface area $S$ is given by
where $\mathbf{r}_{u}=$ $\qquad$ and
$\mathbf{r}_{v}=$

## Homework Assignment

Page(s)
Exercises

## Section 15.6 Surface Integrals

Objective: In this lesson you learned how to evaluate a surface integral, determine the orientation of a surface, and evaluate a flux integral.
I. Surface Integrals (Pages 1112-1115)

Let $S$ be a surface with equation $z=g(x, y)$ and let $R$ be its projection onto the $x y$-plane. If $g, g_{x}$, and $g_{y}$ are continuous on $R$ and $f$ is continuous on $S$, then the surface integral of $\boldsymbol{f}$ over $\boldsymbol{S}$ is
II. Parametric Surfaces and Surface Integrals (Page 1116)

For a surface $S$ given by the vector-valued function
$\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}$ defined over a region $D$ in the $u v$-plane, you can show that the surface integral of $f(x, y, z)$ over $S$ is given by
III. Orientation of a Surface (Page 1117)

Unit normal vectors are used to $\qquad$
$\qquad$ . A surface is called orientable if
$\qquad$
$\qquad$

If this is possible, $S$ is called $\qquad$ .

## IV. Flux Integrals (Pages 1118-1121)

Suppose an oriented surface $S$ is submerged in a fluid having a continuous velocity field $\mathbf{F}$. Let $\Delta S$ be the area of a small patch of the surface $S$ over which $\mathbf{F}$ is nearly constant. Then the amount of fluid crossing this region per unit time is

Course Number

Instructor

Date

What you should learn How to evaluate a surface integral as a double integral

What you should learn How to evaluate a surface integral for a parametric surface

What you should learn How to determine the orientation of a surface

What you should learn How to understand the concept of a flux integral
approximated by $\qquad$
$\qquad$ . Consequently, the volume of fluid
crossing the surface $S$ per unit time is called $\qquad$
$\qquad$ .

Let $\mathbf{F}(x, y, z)=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$, where $M, N$, and $P$ have continuous first partial derivatives on the surface $S$ oriented by a unit normal vector $\mathbf{N}$. The flux integral of $\mathbf{F}$ across $\boldsymbol{S}$ is given by

Let $S$ be an oriented surface given by $z=g(x, y)$ and let $R$ be its projection onto the $x y$-plane. If the surface is oriented upward,

$$
\iint_{S} \mathbf{F} \cdot \mathbf{N} d S=\square . \text { If }
$$

the surface is oriented downward, $\iint_{S} \mathbf{F} \cdot \mathbf{N} d S=$

## Homework Assignment

Page(s)
Exercises

## Section 15.7 Divergence Theorem

Objective: In this lesson you learned how to use the Divergence Theorem and how to use it to calculate flux.

Course Number Instructor

Date

## What you should learn

 How to understand and use the Divergence TheoremIn the Divergence Theorem, the surface $S$ is closed in the sense that it $\qquad$
$\qquad$

Let $Q$ be a solid region bounded by a closed surface $S$ oriented by a unit normal vector directed outward from $Q$. The Divergence Theorem states that if $\mathbf{F}$ is a vector field whose component functions have continuous first partial derivatives in $Q$, then
II. Flux and the Divergence Theorem (Pages 1129-1130)

Consider the two sides of the equation
$\iint_{S} \mathbf{F} \cdot \mathbf{N} d S=\iiint_{Q} \operatorname{div} \mathbf{F} d V$. The flux integral on the left
determines $\qquad$
$\qquad$ . This can be approximated by
$\qquad$
The triple integral on the right measures $\qquad$ .
$\qquad$
$\qquad$

What you should learn
How to use the
Divergence Theorem to calculate flux

The point $\left(x_{0}, y_{0}, z_{0}\right)$ in a vector field is classified as a source if ; a sink if $\qquad$ , or
incompressible if $\qquad$ .

In hydrodynamics, a source is a point at which $\qquad$

A sink is a point at which $\qquad$ .

## Homework Assignment

Page(s)
Exercises

## Section 15.8 Stokes's Theorem

Objective: In this lesson you learned how to use Stokes's Theorem to evaluate a line integral or a surface integral and how to use curl to analyze the motion of a rotating liquid.

Course Number Instructor

Date
I. Stokes's Theorem (Pages 1132-1134)

Stokes's Theorem gives the relationship between $\qquad$

The positive direction along $C$ is $\qquad$ relative to the normal vector $\mathbf{N}$. That is, if you imagine grasping the normal vector $\mathbf{N}$ with your right hand, with your thumb pointing in the direction of $\mathbf{N}$, your fingers will point $\qquad$ .

Let $S$ be an oriented surface with unit normal vector $\mathbf{N}$, bounded by a piecewise smooth simple closed curve $C$ with a positive orientation. Stokes's Theorem states that if $\mathbf{F}$ is a vector field whose component functions have continuous first partial derivatives on an open region containing $S$ and $C$, then

## II. Physical Interpretation of Curl (Pages 1135-1136)

$$
\operatorname{curl} \mathbf{F}(x, y, z) \cdot \mathbf{N}=
$$

$\qquad$

The rotation of $\mathbf{F}$ is maximum when $\qquad$ . Normally, this tendency to rotate will vary from point to point on the surface $S$, and Stokes's Theorem says that the collective measure of this rotational tendency taken over the entire surface $S$ (surface integral) is equal to $\qquad$ .

[^12]If curl $\mathbf{F}=\mathbf{0}$ throughout region $Q$, the rotation of $\mathbf{F}$ about each unit normal $\mathbf{N}$ is $\qquad$ . That is, $\mathbf{F}$ is

## Homework Assignment

Page(s)
Exercises

## Chapter 16 Additional Topics in Differential Course Number Equations <br> Section 16.1 Exact First-Order Equations <br> Objective: In this lesson you learned how to recognize and solve exact Date differential equations. <br> I. Exact Differential Equations (Pages 1144-1146) <br> The equation $M(x, y) d x+N(x, y) d y=0$ is an exact differential <br> What you should learn How to solve an exact differential equation

 equation if $\qquad$The general solution of the equation is $\qquad$ .

State the Test for Exactness.

A $\qquad$ is actually
a special type of an exact equation.

Example 1: Test whether the differential equation

$$
\left(5 x-x^{3} y\right) d x+\left(y-\frac{1}{4} x^{4}\right) d y=0 \text { is exact. }
$$

A general solution $f(x, y)=C$ to an exact differential equation can be found by $\qquad$ .
II. Integrating Factors (Pages 1147-1148)

If the differential equation $M(x, y) d x+N(x, y) d y=0$ is not exact, it may be possible to make it exact by $\qquad$

What you should learn
How to use an integrating factor to make a differential equation exact

Consider the differential equation $M(x, y) d x+N(x, y) d y=0$. If $\frac{1}{N(x, y)}\left[M_{y}(x, y)-N_{x}(x, y)\right]=h(x)$ is a function of $x$ alone, then is an integrating factor. If
$\frac{1}{M(x, y)}\left[N_{x}(x, y)-M_{y}(x, y)\right]=k(y)$ is a function of $y$ alone,
then is an integrating factor.

## Additional notes

## Homework Assignment

Page(s)
Exercises

## Section 16.2 Second-Order Homogeneous Linear Equations

Objective: In this lesson you learned how to solve second-order
Course Number Instructor

Date homogeneous linear differential equations and higherorder homogeneous linear differential equations.
I. Second-Order Linear Differential Equations
(Pages 1151-1154)
Let $g_{1}, g_{2}, \ldots g_{n}$ and $f$ be functions of $x$ with a common (interval) domain. An equation of the form
$y^{(n)}+g_{1}(x) y^{(n-1)}+g_{2}(x) y^{(n-2)}+\cdots+g_{n-1}(x) y^{\prime}+g_{n}(x) y=f(x)$
is called a $\qquad$ ـ.

If $f(x)=0$, the equation is $\qquad$ ; otherwise, it is $\qquad$ .

The functions $y_{1}, y_{2}, \ldots, y_{n}$ are $\qquad$ if
the only solution of the equation $C_{1} y_{1}+C_{2} y_{2}+\cdots+C_{n} y_{n}=0$ is the trivial one, $C_{1}=C_{2}=\cdots=C_{n}=0$. Otherwise, this set of functions is $\qquad$ .

If $y_{1}$ and $y_{2}$ are linearly independent solutions of the differential equation $y^{\prime \prime}+a y^{\prime}+b y=0$, then the general solution is
$\qquad$ , where $C_{1}$ and $C_{2}$ are constants.

In other words, if you can find two linearly independent solutions, you can obtain the general solution by $\qquad$ .

The characteristic equation of the differential equation

$$
y^{\prime \prime}+a y^{\prime}+b y=0 \text { is }
$$

$\qquad$ _.

The solutions of $y^{\prime \prime}+a y^{\prime}+b y=0$ fall into one of the following there cases, depending on the solutions of the characteristic equation, $m^{2}+a m+b=0$.
1.

What you should learn How to solve a secondorder linear differential equation
2.
3.
II. Higher-Order Linear Differential Equations (Page 1155)

Describe how to solve higher-order homogeneous linear differential equations.

What you should learn How to solve a higherorder linear differential equation
III. Application (Pages 1156-1157)

Describe Hooke's Law.

## What you should learn

How to use a secondorder linear differential equation to solve an applied problem

The equation that describes the undamped motion of a spring is

## Homework Assignment

Page(s)
Exercises

## Section 16.3 Second-Order Nonhomogeneous Linear Equations

Objective: In this lesson you learned how to solve second-order nonhomogeneous linear differential equations.
I. Nonhomogeneous Equations (Page 1159)

Let $y^{\prime \prime}+a y^{\prime}+b y=F(x)$ be a second-order nonhomogeneous linear differential equation. If $y_{p}$ is a particular solution of this equation and $y_{h}$ is the general solution of the corresponding homogeneous equation, then is the general solution of the nonhomogeneous equation.
II. Method of Undetermined Coefficients (Pages 1160-1162)

If $F(x)$ in $y^{\prime \prime}+a y^{\prime}+b y=F(x)$ consists of sums or products of $x^{n}, e^{m x}, \cos \beta x$, or $\sin \beta x$, you can find a particular solution $y_{p}$ by the method of $\qquad$

Describe how to use this method.

Course Number Instructor

Date

What you should learn How to recognize the general solution of a second-order nonhomogeneous linear differential equation

What you should learn
How to use the method of undetermined coefficients to solve a second-order nonhomogeneous linear differential equation
III. Variation of Parameters (Pages 1163-1164)

Describe the conditions to which the method of variation of parameters is best suited.

What you should learn
How to use the method of variation of parameters to solve a second-order nonhomogeneous linear differential equation

To use the method of variation of parameters to find the general solution of the equation $y^{\prime \prime}+a y^{\prime}+b y=F(x)$, use the following steps.
1.
2.
3.
4.

## Homework Assignment

Page(s)
Exercises

## Section 16.4 Series Solutions of Differential Equations

Objective: In this lesson you learned how to use power series to solve differential equations.

Course Number Instructor Date

## I. Power Series Solution of a Differential Equation

 (Page 1167-1168)Recall that a power series represents a function $f$ on $\qquad$
What you should learn How to use a power series to solve a differential equation
$\qquad$ , and you can successively differentiate the power series to obtain a series for $f^{\prime}, f^{\prime \prime}$, and so on.

Describe how to use power series in the solution of a differential equation.

## II. Approximation by Taylor Series (Page 1169)

What type of series can be used to solve differential equations with initial conditions?

What you should learn How to use a Taylor series to find the series solution of a differential equation

Describe how to use this method.

## Additional notes

## Homework Assignment

Page(s)
Exercises
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


[^0]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

[^1]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

[^2]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

[^3]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

[^4]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

[^5]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

[^6]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

[^7]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

[^8]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

[^9]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

[^10]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

[^11]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

[^12]:    Larson/Edwards Calculus 9e Notetaking Guide
    Copyright © Cengage Learning. All rights reserved.

