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Chapter P Preparation for Calculus 
 
Section P.1 Graphs and Models 
 
Objective: In this lesson you learned how to identify the characteristics 

of an equation and sketch its graph. 
 
 
 
 
 
 
 
 
 
I.  The Graph of an Equation  (Pages 2−3) 
 
The point (1, 3) is a              ssssssss sssss           of the equation 

4 3 5x y− + =  because the equation is satisfied when 1 is 

substituted for         s          and 3 is substituted for         s         . 

 
To sketch the graph of an equation using the point-plotting 

method,           sssssssss s sssss ss ssssss ssss ssssssss    ss sssssss 

ssssssss ssssss ss sss sssssssss ssss sssss ssssss ss s      sssssssssss 

ssssssssss sssssss ssssssss sssssss sss ssssss ssss s ssssss     s sssss 

ss sssss                                                                                s 

 
One disadvantage of the point-plotting method is          ssss ss sss 

s ssss ssss sssss sss sssss ss s ssssss sss sss ssss ss ssss         s ssss 

sssssss ssss ssss s sss sssssss sss sssss sssss                                  s 

ssssssssssss sss sssss ss ss sssssssss                                          s 

 
Example 1: Complete the table. Then use the resulting solution  
 points to sketch the graph of the equation 
 y = 3 − 0.5x. 
 
 
 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
How to sketch the graph 
of an equation 

Important Vocabulary  Define each term or concept. 
 
Graph of an equation  sss sss ss sss ssssss ssss sss sssssssss ss sss sssssssss 
 
Intercepts  sss ssssss ss sssss s sssss ssssssssss sss ss ss sssssss 
 

x − 4 − 2 0 2 4 
y s s s s s 
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II.  Intercepts of a Graph  (Page 4) 
 
The point (a, 0) is a(n)               sssssssssss              of the graph 

of an equation if it is a solution point of the equation. The point     

(0, b) is a(n)              sssssssssss              of the graph of an 

equation if it is a solution point of the equation. 

 
To find the x-intercepts of a graph,            sss s ss ssss sss sssss 

sss ssssssss sss ss                                                         s 

To find the y-intercepts of a graph,             sss s ss ssss sss sssss 

sss ssssssss sss ss                                                          s 

 
 
III.  Symmetry of a Graph  (Pages 5−6) 
 
Knowing the symmetry of a graph before attempting to sketch it 

is useful because                               ssss sss ssss ssss ssss ss ssss 

ssssss ss ssssss sss ssssss                                                   s 

 
The three types of symmetry that a graph can exhibit are  

      ssssss sssssssss ssssss sssssssss ss ssssss sssssssss        s 

 
A graph is symmetric with respect to the y-axis if, whenever            

(x, y) is a point on the graph,      ss ss ss      is also a point on the 

graph. This means that the portion of the graph to the left of the 

y-axis is                    s ssssss sssss ss sss sssssss ss sss sssss ss sss 

ssssss                      . A graph is symmetric with respect to the          

x-axis if, whenever (x, y) is a point on the graph,      sss s ss      is 

also a point on the graph. This means that the portion of the 

graph above the x-axis is             s ssssss sssss ss sss sssssss sssss 

sss ssssss                              . A graph is symmetric with respect 

to the origin if, whenever (x, y) is a point on the graph,  

     ss ss s ss        is also a point on the graph. This means that the 

graph is           sssssssss ss s ssss                                          ssss ss 

ssss ssss                                                                . 

 
 

What you should learn 
How to test a graph for 
symmetry with respect to 
an axis and the origin 

What you should learn 
How to find the 
intercepts of a graph 
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The graph of an equation in x and y is symmetric with respect to 

the y-axis if                  sssssssss s ssss s s ssssss ss ssssssssss 

ssssssss                                        . 

 
The graph of an equation in x and y is symmetric with respect to 

the x-axis if                     sssssssss s ssss s s ssssss ss ssssssssss 

ssssssss                                        . 

 
The graph of an equation in x and y is symmetric with respect to 

the origin if              sssssssss s ssss s s sss s ssss s s ssssss ss 

ssssssssss ssssssss                                        . 

 
Example 2: Use symmetry to sketch the graph of the equation 

22 2 += xy . 

y
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x

 
 
 
IV.  Points of Intersection  (Page 6) 
 
A point of intersection of the graphs of two equations is               s 

sssss ssss sssssssss ssss ssssssssss                                         s 

 
You can find the points of intersection of two graphs by        sssssss 

sssss sssssssss sssssssssssssss                                         s 

 
 
Example 3: Find the point of intersection of the graphs of 

2 10y x= +  and 14 3y x= − . 
 
 sssss sssss 
 
 
 

What you should learn 
How to find the points of 
intersection of two 
graphs 
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V.  Mathematical Models  (Page 7) 
 
In developing a mathematical model to represent actual data, 

strive for two (often conflicting) goals:               ssssssss sss 

ssssssssss                                               . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to interpret 
mathematical models for 
real-life data 
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Section P.2 Linear Models and Rates of Change 
 
Objective: In this lesson you learned how to find and graph an 

equation of a line, including parallel and perpendicular 
lines, using the concept of slope. 

 
 
 
 
 
 
 
 
 
 
 
I.  The Slope of a Line  (Page 10) 
 
The slope of the nonvertical line passing through the points             

(x1, y1) and (x2, y2) is m =            sssss s sss s sssssss s sss          . 

To find the slope of the line through the points (− 2, 5) and  

(4, − 3),                  ssssssss s s ssss s sss ssssss ssss ssssss ss sss 

ssssssssss ss s s sss s                                         s 

 
If a line falls from left to right, it has       ssssssss       slope. If a 

line is horizontal, it has            ssss           slope. If a line is 

vertical, it has       sssssssss       slope. If a line rises from left to 

right, it has         ssssssss       slope. 

 
 
II.  Equations of Lines  (Page 11) 
 
The point-slope equation of a line with slope m, passing 

through the point 1 1( , )x y  is 

                   s s ss s sss s sss                                . 

 
Example 1: Find an equation of the line that passes through the 

points (1, 5) and (− 3, 7). 
 s s s ssss s sss 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to write the 
equation of a line with a 
given point and slope 

Important Vocabulary  Define each term or concept. 
 
Slope  sss ssssss ss sssss s sssssssssss ssss sssss sss ssssss ssssssssss sss ssss ssss ss 
ssssssssss ssssss ssss ssss ss ssssss 
Parallel  sss ssssssss sssssssssss sssss sss ssssssss ss sss ssss ss sssss ssssss sss ssssss 
ssss sss ss s sss 
Perpendicular  sss sssssssssss sssss sss sssssssssssss ss sss ssss ss sssss ssssss sss 
ssssssss sssssssssss ss ssss ssssss ssss sss ss s s sssss 

What you should learn 
How to find the slope of 
a line passing through 
two points 
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III.  Ratios and Rates of Change  (Page 12) 
 
In real-life problems, the slope of a line can be interpreted as 

either         s sssss         , if the x-axis and y-axis have the same 

unit of measure, or        s ssss ss ssss ss ssssss        , if the x-axis 

and y-axis have different units of measure. 

 
An average rate of change is always calculated over              ss 

ssssssss                              . 

 
 
IV.  Graphing Linear Models  (Pages 13−14) 
 
The slope-intercept form of the equation of a line is  

        s s ss s s         . The graph of this equation is a line having a 

slope of           s           and a y-intercept at (   s   ,   s   ). 

 
Example 1: Explain how to graph the linear equation  
 y = − 2/3x − 4. Then sketch its graph. 

sssssss s s s ss sss sssssssssss ss sss s sss sssssss 
sss sssss ss s ssss sss ssss sssss s sssss    sss sssss s 
sssss sss ssss sssss ss sss ssssss 

 
 
 
 
 
 
 
 
 
 
 
Example 2: Sketch and label the graph of (a)  y = − 1 and  
 (b)  x = 3. 
(a)    (b) 

 

 

 

 

 

 

What you should learn 
How to interpret slope as 
a ratio or as a rate in a 
real-life application 

What you should learn 
How to sketch the graph 
of a linear equation in 
slope-intercept form 
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The equation of a vertical line cannot be written in slope-

intercept form because                             sss sssss ss s ssssssss 

ssss ss sssssssss                                                    s  A vertical line 

has an equation of the form          s s s          . 

 
The equation of any line can be written in general form, which 

is given as      ss s ss s s s s                             , where A and B are 

not both zero. 

 
 
V.  Parallel and Perpendicular Lines  (Page 14−15) 
 
The relationship between the slopes of two lines that are parallel 

is                          ssss sss ssssss sss sss ssss                              s 

The relationship between the slopes of two lines that are 

perpendicular is                              ssss sss ssssss sss ssssssss 

sssssssssss ss ssss sssss                                    s 

 

A line that is parallel to a line whose slope is 2 has slope      s     . 

A line that is perpendicular to a line whose slope is 2 has slope 

     s sss      . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to write equations 
of lines that are parallel 
or perpendicular to a 
given line 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section P.3 Functions and Their Graphs 
 
Objective: In this lesson you learned how to evaluate and graph a 

function and its transformations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I.  Functions and Function Notation  (Pages 19−20) 
 
Let X and Y be sets of real numbers. A real-valued function f of 

a real variable x from X to Y is                      s ssssssssssssss ssss 

sssssss ss ssss ssssss s ss s sssssss sss ssssss s ss s             . In this 

situation, the domain of f is          sss sss s            . The number y 

is the                 sssss                   of x under f and is denoted by 

               ssss                  , which is called the value of f at x. The 

range of f is                  s ssssss ss s                  and consists of  

                       sss ssssss ss sssssss ss s                          . 

 
In the function 22 8 3y x x= + − , which variable is the 

independent variable?              s               s 

Which variable is the dependent variable?                s               s 

 
Example 1: If 13754)( 23 +−−= wwwwf , describe how to 

find )2(−f  and then find the value of )2(−f . 
 sssssss ssss ssssssssss ss s ss sss ssssssss ss          s 

s sss ssssssss sss sssssssss sssssssss sssssssssss sss 
sssss ss ssss 

 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use function 
notation to represent and 
evaluate a function 

Important Vocabulary  Define each term or concept. 
 
Independent variable  s ssssssss ss ss ssssssss ssss sss ssss ss sss sssss sss sssss sss 
ssssssss ss ssssssss 
 
Dependent variable  s ssssssss ss ss ssssssss sssss sssss sssssss ss sss ssssss ss sss 
sssssssssss sssssssss 
 
Function  s ssssssss ssss s ss s ss s ssssssssssss sssssss s sss s ssss sss sss ssssssss ssss 
sss sss sssssss sssss ssss sss ssss sssssss ssss ssss sss ssss ssssssss 
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II.  The Domain and Range of a Function  (Page 21) 
 
The domain of a function can be described explicitly, or it may 

be described implicitly by             ss ssssssss ssss ss ssssss sss 

ssssssss                     . The implied domain is                 sss sss ss 

sss ssss sssssss sss sssss sss ssssssss ss sssssss                            , 

whereas an explicitly defined domain is one that is           sssss 

sssss ssss sss ssssssss                                   . 

 
A function from X to Y is one-to-one if                              ss ssss 

sssssss ss sss sssss sssss sssssssssss sssssss sss       sssssss ss sss 

ssssss                                                                s 

 
A function from X to Y is onto if                                    sss sssss 

ssssssss ss sss ss s                                                          s 

 
 
III.  The Graph of a Function  (Page 22) 
 
The graph of the function y = f(x) consists of                sss ssssss 

sss ssssss sssss s ss ss sss ssssss ss s                             . 

 
The Vertical Line Test states that                           s sssss ss sss 

ssssssssss sssss ss sss sssss ss s ssssssss ss s ss sss ssss ss        ss 

ssssssss ssss ssssssssss sss sssss ss ssss ssss sss sssss              s 

 
Example 2: Decide whether each graph represents y as a 

function of x. 
(a)     (b) 
 
 
 
 
 
 
 
 
 
 
sss  ssss ssssssssss s ssssssss  sss  sss ssss sss sssssssss s ssssssss 
 
 
 

What you should learn 
How to find the domain 
and range of a function 

What you should learn 
How to sketch the graph 
of a function 
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Sketch an example of each of the following eight basic graphs. 
 
Squaring Function   Identity Function  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Absolute Value Function  Square Root Function  
 
 
 
 
 
 
 
 
 
 
 
 
 
Rational Function   Cubing Function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y
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Sine Function    Cosine Function 
 
 
 
 
 
 
 
 
 
 
 
 
 
IV.  Transformations of Functions  (Page 23) 
 
Let c be a positive real number. Complete the following 
representations of shifts in the graph of )(xfy = : 
1)  Horizontal shift c units to the right:           s s sss s ss       s 

2)  Horizontal shift c units to the left:           s s sss s ss       s 

3)  Vertical shift c units downward:            s s ssss s s           s 

4)  Vertical shift c units upward:              s s ssss s s           s 

5)  Reflection (about the x-axis):              s s s ssss           s 

6)  Reflection (about the y-axis):              s s  sssss           s 

7)  Reflection (about the origin):              s s s sssss           s 

 
 
V.  Classifications and Combinations of Functions 
       (Pages 24−26) 
 
Elementary functions fall into the following three categories:  

sssssssss sssssssss ssssssssssss ssssssss sss ssssssssss 

sssssssssssss sssssssss ssssss sssssss ssssssss ssssss sss 

sssssssssss sss sssssssssss sssssssss                                   . 

 
Let n be a nonnegative integer. Then a polynomial function of x 

is given as     ssss s ssss s ss s sss s  s s s s s s ssss s sss s ss               s 

 
The numbers ai are          ssssssssssss         , with an the      sssssss 

sssssssssss                  and a0 the            ssssssss ssss            of the 

polynomial function. If 0na ≠ , then n is the           ssssss          of 

the polynomial function. 

What you should learn 
How to identify different 
types of transformations 
of functions 

What you should learn 
How to classify functions 
and recognize 
combinations of 
functions 

y

x

y

x
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Just as a rational number can be written as the quotient of two 

integers, a rational function can be written as            sss ssssssss 

ss sss sssssssssss                     . 

 
An algebraic function of x is one that                sss ss sssssssss ss 

s ssssss ssssss ss sssss sssssssssss          s ssssssssss ssssssssss sss 

ssssssss sssssssss                                         . Functions that are 

not algebraic are               ssssssssssssss                   . 

 
Two functions can be combined by the operations of  

     sssssssss ssssssssssss sssssssssssssss sss ssssssss                  s 

to create new functions.  

 
Functions can also be combined through composition. The 

resulting function is called a(n)           sssssssss ssssssss       . 

 
Let f and g be functions. The function given by =))(( xgf o   

          sssssss           is called the composite of f with g. The 

domain of f go  is     sss sss ss sss s ss sss ssssss ss s ssss ssss 

ssss ss ss sss ssssss ss s             s 

 
Example 3: Let 43)( += xxf  and let 12)( 2 −= xxg . Find 

(a) ))(( xgf o  and (b) ))(( xfg o . 
  sss  sss s s             sss ssss s sss s ss 
 
 
An x-intercept of a graph is defined to be a point (a, 0) at which 

the graph crosses the x-axis. If the graph represents a function f, 

the number a is a             ssss ss s                   . In other words, the 

zeros of a function f are                           sss sssssssss ss sss 

ssssssss ssss s s                  . 

 
A function is even if                            sss sssss ss sssssssss ssss 

sssssss ss sss ssssss                           . A function is odd if            

sss sssss ss sssssssss ssss sssssss ss sss ssssss                         . 
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The function ( )y f x=  is even if            sssss s ssss                    . 
 
The function ( )y f x=  is odd if            sssss s sssss                    . 
 
 
Example 4: Decide whether the function 134)( 2 +−= xxxf  

is even, odd, or neither. 
 sssssss 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

y

x

y

x

y

x

y

x

y

x

y

x
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Section P.4 Fitting Models to Data 
 
Objective: In this lesson you learned how to fit a mathematical 

model to a real-life data set. 
 
 
I.  Fitting a Linear Model to Data  (Page 31) 
 
Describe how to find a linear model to represent a set of paired 
data. 
 
aaaa aaa aaaa aaa aaaaaa aaaa a aaaaaa aaaaa aa aaaaaaaaaaaa 
aaaa aaa a aaaaaaaaa aaaa aaaaaaaaaa aaaaaa aaaaaa aaaaaaaaaa 
aa aaaa aaa aaaaaa aaaaaa aaaa aaaaaaaaaa aaa aaaaaaaa 
aaaaaaaaaaa aaaa aaaaaaaa aaaaa aaaaaaa aaaaaaaaaa aaaaaaaa 
aaaa aaa aa aaaa aa aaaa aaa aaaaaa aaaaaa aa aa aaa aaaaa aaa 
aaaa aaaa aaa aaaaaaaaaa aaa aaaa aaa aaa aaaaaa aaaaaaaaaa 
aaaaaaaa aaa aaaaa aaa aaaaaaaaaaa aa aaa aaaaaaaaaaaa aaaa 
aaaa aa aaaaaaaaaa 
 
 
 
 
What does the correlation coefficient r indicate? 
 
aaa aaaaaaa aa a aaaaaaaaaaaa aaaaaa aaaaaaaaaa aaaaaaa 
aaaaaaaaa aaaa aaaaaaaa aa aaaaaaaa aaa aaaaaaaaaaa 
aaaaaaaaaaaa aaaa aaaaa aaaaa a aaaaaaa aa aaa aaaa aaa aaaaa 
aaaa aaa aaaaa aaa aaaaaa aaa aa aa aa aaa aaaaaa aaa aaaaa aaaa 
aaa aaaaa aa aaa aaaaaaa aa aaaaaaaaa aaa aaaaaaaaa aaaa a 
aaaaaaaa aaaaaaaaaaaa aa aaa aaaaaaa aa aaaaaaaaa aaa 
aaaaaaaaa aaaa a aaaaaaaa aaaaaaaaaaaa 
 
 
 
 
Example 1: Find a linear model to represent the following 

data. Round results to the nearest hundredth. 
 (−2.1, 19.4) (−3.0, 19.7) (8.8, 16.9) 
 (0, 18.9)  (6.1, 17.4) (−4.0, 20.0) 
 (3.6, 18.1) (0.9, 18.8) (2.0, 18.5) 
 
 a a aaaaaa a aaaaa 
 
 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to fit a linear model 
to a real-life data set 
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II.  Fitting a Quadratic Model to Data  (Page 32) 
 
Example 2: Find a model to represent the following data. 

Round results to the nearest hundredth. 
 (−5, 68)  (−3, 30)  (−2, 22) 
 (−1, 11)  (0, 3)  (2, 8) 
 (4, 23)  (5, 43)  (7, 80) 
 
 a a aaaaaaa a aaaaa a aaaa 
 
 
III.  Fitting a Trigonometric Model to Data  (Page 33) 
 
Example 3: Find a trigonometric function to model the data in 

the following table. 
 
 
 
 
 
 a a a aaa a a a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to fit a quadratic 
model to a real-life data 
set 

What you should learn 
How to fit a 
trigonometric model to a 
real-life data set 

y

x

y

x

y

x

x 0 π/2 π 3π/2 2π 
y 2 4 2 0 2 
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Chapter 1 Limits and Their Properties 
 
Section 1.1 A Preview of Calculus 
 
Objective: In this lesson you learned how calculus compares with 

precalculus. 
 
I.  What is Calculus?  (Pages 42−44) 
 
Calculus is                          sss sssssssssss ss sssssss ssss sss sss 

sssssssssss      ss sssssssssss ssssssssssssss sssssss ssssss sssssss 

ssssss ssssssss sss ssssssss ssssssssss sssssssssss sss s sssssss ss 

sssss ssssssss ssss ssss sssssss sssssssssss              ssssssssss sss 

ssssssssss ss sssss sssssssss ssssssssss                                 . 

 
List some problem-solving strategies that will be helpful in the 
study of calculus. 
 
ss ssss ss ssssssssss sss sssssssssssssssss s sssss sssss ssssssssss 
ssss sssss ss ssssss ssssssss ssss sss s ssssssss sssss s sssssss 
ssssssss ssss ssssssssss ssss s ssssssss ss sss sssssssssssssssssssss 
ssss sssss sss ssss ss ssssss sss sssssssssssssss ssss ss ssss sssss 
ssss ssss ssssss ssss sssssss 
 
 
 
 
 
II.  The Tangent Line Problem  (Page 45) 
 
In the tangent line problem, you are given           s ssssssss s sss s 

sssss s ss sss sssss                           and are asked to            ssss ss 

ssssssss ss sss sssssss ssss ss sss sssss ss sssss s                . 

 

Except for cases involving a vertical tangent line, the problem of 

finding the tangent line at a point P is equivalent to           sssssss 

sss sssss ss sss sssssss ssss ss s                                . You can 

approximate this slope by using a line through                 sss sssss 

ss ssssssss sss s ssssss sssss ss sss sssss                   . Such a line 

is called a              ssssss ssss               . 

 

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
How to understand what 
calculus is and how it 
compares with 
precalculus 

What you should learn 
How to understand that 
the tangent line problem 
is basic to calculus 
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If P(c, f(c)) is the point of tangency and Q(c + Δx, f(c + Δx)) is a 

second point on the graph of f, the slope of the secant line 

through these two points can be found using precalculus and is 

given by secm = . 

 
As point Q approaches point P, the slope of the secant line 

approaches the slope of the                sssssss ssss               . When 

such a “limiting position” exists, the slope of the tangent line is 

said to be                           sss sss                        sssss ss sss ssssss 

ssss                                                           . 

 
 
III.  The Area Problem  (Page 46) 
 
A second classic problem in calculus is                             sssssss 

sss ssss ss s sssss ssssss ssss ss sssssss                   ss sss ssssss ss 

sssssssss                                   . This problem can also be solved 

with                      s sssss sssssss                . In this case, the limit 

process is applied to                       sss ssss ss s sssssssss ss ssss 

sss ssss ss s sssssss ssssss                                        . 

 
Consider the region bounded by the graph of the function 

( )y f x= , the x-axis, and the vertical lines x = a and x = b. You 

can approximate the area of the region with                     sssssss 

sssssssssss  sssssss                         . As you increase the number 

of rectangles, the approximation tends to become                ssssss 

sss ssssss sssssss sss ssssss ss ssss ssssss s            s sss ssssssssss 

sssssssss                                    . Your goal is to determine the 

limit of the sum of the areas of the rectangles as            sss ssssss 

ss ssssssssss sssssssss sssssss sssss                                      . 

 

What you should learn 
How to understand that 
the area problem is also 
basic to calculus 

Homework Assignment 
 
Page(s) 
 
Exercises 

    sss s sss s sssss 

             sss 
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Section 1.2 Finding Limits Graphically and Numerically 
 
Objective: In this lesson you learned how to find limits graphically 

and numerically. 
 
 
I.  An Introduction to Limits  (Pages 48−49) 
 
The notation for a limit is lim ( )

x c
f x L

→
= , which is read as 

                sss sssss ss ssss ss s ssssssssss s ss s                        s 
 
The informal description of a limit is as follows:                ss ssss 

sssssss sssssssssss sssss ss s ssssss ssssss s ss s ssssssssss s   ssss 

ssssss sssss sss sssss ss sssss ss s ssssssssss ss ss s                       . 

 

Describe how to estimate the limit 
2

44lim
2

2 +
++

−→ x
xx

x
 numerically. 

sss s sss s sss s ss s sssss s sss ssss sssssssss s sssss ssss sssss 
ssssss ss s sss sss sss ssss ss ssssssssssss sss ssss ssssssssss    s s 
ssss sss ssss sss sss ssss ssssssssss s s ssss sss ssssss sss sss sssss 
ss ssss sss s sssssssss sssss ss sss sssss ss s sss ss s ssssssssss s ss 
ssss ss ss ssssssss ss sss ssssss 
 
 
 
The existence or nonexistence of f(x) at x = c has no bearing on 

the existence of             sss sssss ss ssss ss s ssssssssss s           . 

 
 
II.  Limits That Fail to Exist  (Pages 50−51) 
 
If a function f(x) approaches a different number from the right 

side of x = c than it approaches from the left side, then            sss 

sssss ss ssss ss s ssssssssss s ssss sss sssss                                 . 

 
If f(x) is not approaching a real number L—that is, if f(x) 

increases or decreases without bound—as x approaches c, you 

can conclude that             sss sssss ssss sss sssss                          . 

 
The limit of f(x) as x approaches c also does not exist if f(x) 

oscillates between                    sss sssss ssssss                      as x 

approaches c. 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to estimate a limit 
using a numerical or 
graphical approach 

What you should learn 
How to learn different 
ways that a limit can fail 
to exist 
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III.  A Formal Definition of Limit  (Pages 52−54) 
 
The ε-δ definition of limit assigns mathematically rigorous 

meanings to the two phrases             ssss sssssss sssssssssss sssss 

ss s                          and             s ssssssssss s               used in the 

informal description of limit. 

 
Let ε represent                s sssss ssssssss ssssss             . Then the 

phrase “f(x) becomes arbitrarily close to L” means that f(x) lies in 

the interval               ss s ss s s ss               . Using absolute value, 

you can write this as              sssss s ss s s                 . The phrase 

“x approaches c” means that there exists a positive number δ 

such that x lies in either the interval            ss s ss ss            or the 

interval            sss s s ss           . This fact can be concisely 

expressed by the double inequality           s s ss s ss s s              . 

 
State the formal ε-δ definition of limit. 

 
sss s ss s ssssssss sssssss ss ss ssss ssssssss ssssssssss s sssssss 
ssssssss ss ss sss sss s ss s ssss sssssss sss sssssssss ssss ssss s s 
sssss ssss sss ssss s s s sssss ssssss s s s s ssss sssssssss ss s s ss s 
ss s ss ssss sssss s ss s sss 
 
 
 
 
 
Example 1: Use the ε-δ definition of limit to prove that 

2
lim (10 3 ) 16
x

x
→−

− = . 

 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to study and use a 
formal definition of limit 
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Section 1.3 Evaluating Limits Analytically 
 
Objective: In this lesson you learned how to evaluate limits 

analytically. 
 
 
I.  Properties of Limits  (Pages 59−61) 
 
The limit of f(x) as x approaches c does not depend on the value 

of f at x = c. However, it may happen that the limit is precisely 

f(c). In such cases, the limit can be evaluated by                 aaaaaa 

aaaaaaaaaaaa                                     . 

 
Theorem 1.1  Let b and c be real numbers and let n be a positive 
integer. Complete each of the following properties of limits. 
 
1.  =

→
b

cx
lim           a          a 

2.  =
→

x
cx

lim           a          a 

 
3.  =

→
n

cx
xlim           aa          a 

 
Theorem 1.2  Let b and c be real numbers, let n be a positive 
integer, and let f and g be functions with the following limits. 
            Lxf

cx
=

→
)(lim      and     Kxg

cx
=

→
)(lim  

Complete each of the following statements about operations with 
limits. 
 
1.  Scalar multiple: =

→
)]([lim xfb

cx
           aa          a 

 
2.  Sum or difference: =±

→
)]()([lim xgxf

cx
           a a a         a 

 
3.  Product:   =⋅

→
)]()([lim xgxf

cx
           aa         a 

 

4.  Quotient:   =
→ )(

)(lim
xg
xf

cx
      aaaa aaaaaaaa a a a      a 

 
5.  Power:   =

→
n

cx
xf )]([lim            aa          a 

 
Example 1: Find the limit:  2

4
3lim x

x→
. 

 aa 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to evaluate a limit 
using properties of limits 
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The limit of a polynomial function p(x) as x→c is simply the 

value of p at x = c. This direction substitution property is value 

for                             aaa aaaaaaaaaa aaa aaaaaaaa aaaaaaaaa aaaa 

aaaaaaa aaaaaaaaaaaa                                     . 

 
Theorem 1.3  If p is a polynomial function and c is a real 

number, then =
→

)(lim xp
cx

           aaaa          . If r is a rational 

function given by ( ) ( ) / ( )r x p x q x=  and c is a real number such 

that ( ) 0q c ≠ , then lim ( )
x c

r x
→

=          aaaa         a    aaaaaaaaa       . 

 
Theorem 1.4  Let n be a positive integer. The following limit is 
valid for all c if n is odd, and is valid for c > 0 if n is even: 
 
     =

→
n

cx
xlim             aa a            a 

 
Theorem 1.5  If f and g are functions such that lim ( )

x c
g x L

→
=  and 

lim ( ) ( )
x L

f x f L
→

= , then lim ( ( ))
x c

f g x
→

=      a aaaa aaaaa aaaa         . 

 
Theorem 1.6  Let c be a real number in the domain of the given 
trigonometric function. Complete each of the following limit 
statements. 
 
1.  lim sin

x c
x

→
=                 aaa a                  a 

2.  lim cos
x c

x
→

=                 aaa a                  a 

3.  lim tan
x c

x
→

=                 aaa a                  a 

4.  lim cot
x c

x
→

=                 aaa a                  a 

5.  lim sec
x c

x
→

=                 aaa a                  a 

6.  lim csc
x c

x
→

=                 aaa a                  a 

 
Example 2: Find the following limits. 

a.  24

4
lim 5 1
x

x
→

+  

b.  limcos
x

x
π→

 

a 
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II.  A Strategy for Finding Limits  (Page 62) 
 
Theorem 1.7  Let c be a real number and let ( ) ( )f x g x=  for all 

x c≠  in an open interval containing c. If the limit of g(x) as x 

approaches c exists, then the limit of f(x)          aaaa aaaa       and 

lim ( )
x c

f x
→

=                 aaa aaaa                    . 

 
This theorem states that if two functions agree at all             aaa a 

aaaaaa aaaaa a                  , then they have identical limit 

behavior at x = c. 

 
List four steps in the strategy for finding limits. 
 
aa  aaaaa aa aaaaaaaaa aaaaa aaaaaa aaa aa aaaaaaaaa aa aaaaaa 
aaaaaaaaaaaaaaaa  aa aaa aaaaa aa aaaa aa a aaaaaaaaaa a aaaaaa 
aa aaaaaaaaa aa aaaaaa aaaaaaaaaaaaa aaa aa aaaa a aaaaaaaa a 
aaaa aaaaaa aaaa a aaa aaa a aaaaa aaaa a a aa aaaaaaa a aaaa 
aaaa aaa aaaaa aa aaaa aaa aa aaaaaaaaa aa aaaaaa 
aaaaaaaaaaaaaaaaa  aaaaa aaaaaaa aaa aa aaaaaaaa aaaaaaaaaaaa 
aaaa aaaaa aaaa a aaa aaaa a aaaaaaaaa  aaa a aaaaa aa aaaaa aa 
aaaaaaaaa aaaa aaaaaaaaaaaa 
 
 
 
III.  Dividing Out and Rationalizing Techniques 
        (Pages 63−64) 
 
An expression such as the meaningless fractional form 0/0 is 

called a(n)           aaaaaaaaaaaaa aaaa                 because you 

cannot, from the form alone, determine the limit. When you try 

to evaluate a limit and encounter this form, remember that you 

must rewrite the fraction so that the new denominator           aaaa 

aaa aaaa a aa aaa aaaaa              . One way to do this is to      aaaa 

aaa aaaa aaaaaaa                                   , using the dividing out 

technique. Another technique is to           aaaaaaaaaaa           the 

numerator. 

 

Example 3: Find the following limit:  
3

158lim
2

3 −
+−

→ x
xx

x
. 

 a a 

What you should learn 
How to develop and use a 
strategy for finding limits 

What you should learn 
How to evaluate a limit 
using dividing out and 
rationalizing techniques 
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If you apply direct substitution to a rational function and obtain 

( ) 0( )
( ) 0

p cr c
q c

= = , then by the Factor Theorem of Algebra, you 

can conclude that (x − c) must be a           aaaaaa aaaaaa         to 

both p(x) and q(x). 

 
 
IV.  The Squeeze Theorem  (Pages 65−66) 
 
Theorem 1.8  The Squeeze Theorem  If ( ) ( ) ( )h x f x g x≤ ≤  for 

all x in an open interval containing c, except possibly at c itself, 

and if lim ( ) lim ( )
x c x c

h x L g x
→ →

= = , then lim ( )
x c

f x
→

 exists and is 

equal to                 a                . 

 
Theorem 1.9  Two Special Trigonometric Limits 
 

0

sinlim
x

x
x→

=         a        
0

1 coslim
x

x
x→

− =         a      a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to evaluate a limit 
using the Squeeze 
Theorem 

y

x

y

x

y

x



Section 1.4     Continuity and One-Sided Limits  25 

Larson/Edwards   Calculus 9e   Notetaking Guide 
Copyright © Cengage Learning. All rights reserved. 

Section 1.4 Continuity and One-Sided Limits 
 
Objective: In this lesson you learned how to determine continuity at 

a point and on an open interval, and how to determine 
one-sided limits. 

 
 
 
 
 
 
 
 
 
 
 
I.  Continuity at a Point and on an Open Interval 
     (Pages 70−71) 
 
To say that a function f is continuous at x = c means that there is 

no            aaaaaaaaaaaa              in the graph of f at c:  the graph 

is unbroken and there are no       aaaaaa aaaaaa aa aaaa               . 

 
A function f is continuous at c if the following three conditions 
are met: 
 
1.  aaaa aa aaaaaaa 
 
2.  aaa aaaa aaaaaa 
     aaa 

3.  aaa aaaa a aaaa 
     aaa 

 
If f is continuous at each point in the interval (a, b), then it is  

              aaaaaaaaaa aa aa aaaa aaaaaaaa aaa aa                . A 

function that is continuous on the entire real line ( , )−∞ ∞  is 

                  aaaaaaaaaa aaaaaaaaaa                                 . 

 
A discontinuity at c is called removable if                       a aaa aa 

aaaa aaaaaaaaaa aa aaaaaaaaaaaaa aaaaaaaa aa                            a 

aaaaaaaaaa aaaa                                          . 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to determine 
continuity at a point and 
continuity on a open 
interval 

Important Vocabulary  Define each term or concept. 
 
Discontinuity  aa a aaaaaaaa a aa aaaaaaa aa aa aaaa aaaaaaaa a aaa a aa aaa 
aaaaaaaaaa aa aa aaaa a aa aaaa aa aaaa a aaaaaaaaaaaaa aa aa 
 
Greatest integer function � �( )f x x=   aaa aaaaaaaa aaaaaaa aa aaa aaaaaaaa aaaaaaa 
aaaa aaaa aa aaaaa aa aa 
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A discontinuity at c is called nonremovable if                       a 

aaaaaa aa aaaa aaaaaaaaaa aa a a a aa aaaaaaaa aa aaaaaaaaaa 

aaa            a aaaaaaaa aa a a a                                          . 

 
 
II.  One-Sided Limits and Continuity on a Closed Interval 
       (Pages 72−74) 
 
A one-sided limit is the limit of a function f(x) at c from either 

just the        aaaa          of c or just the         aaaaa       of c. 

 
lim ( )
x c

f x L
+→

=  is a one-sided limit from the     aaaaa     and means 

       aaaa a aaaaaaaaaa a aaaa aaaaaa aaaaa aaaa a                    aa 
 
lim ( )
x c

f x L
−→

=  is a one-sided limit from the     aaaa       and means  

        aaaa a aaaaaaaaaa a aaaa aaaaaa aaaa aa a                      a   a 
 
One-sided limits are useful in taking limits of functions 

involving                    aaaaaaaa                     . 

 
When the limit from the left is not equal to the limit from the 

right, the (two-sided) limit               aaaa aaa aaaaa                     . 

 
Let f be defined on a closed interval [a, b]. If f is continuous on the 

open interval (a, b) and lim ( ) ( )
x a

f x f a
+→

=  and lim ( ) ( )
x b

f x f b
−→

= , 

then f is                   aaaaaaaaaa aa aaa aaaa aaaaaaaa aaa aa            . 

Moreover, f is continuous       aaaa aaa aaaa      at a and continuous 

       aaaa aaa aaaa         at b. 

 
 
III.  Properties of Continuity  (Pages 75−76) 
 
If b is a real number and f and g are continuous at x = c, then the 
following functions are also continuous at c. 
 
1.  aaaaaa aaaaaaaaa  aa 
 
2.  aaa aa aaaaaaaaaaa  a a a 
 
3.  aaaaaaaa  aa 
 
4.  aaaaaaaaa  aaaa  aa aaaa a a 

What you should learn 
How to determine one-
sided limits and 
continuity on a closed 
interval 

What you should learn 
How to use properties of 
continuity 
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A polynomial function is continuous at                            aaaaa 

aaaa aaaaaa                            . 

 
A rational function is continuous at                 aaaaa aaaaaa aa 

aaa aaaaaa                              . 

 
If g is continuous at c and f is continuous at g(c), then the 

composite function given by ( )( ) ( ( ))f g x f g x=o  is continuous  

                 aa a                    . 

 
 
IV.  The Intermediate Value Theorem  (Pages 77−78) 
 
Intermediate Value Theorem  If f is continuous on the closed 

interval [a, b], ( ) ( )f a f b≠ , and k is any number between f(a) and 

f(b), then                     aaaaa aa aa aaaa aaa aaaaaa a aa aaa aa aaaa 

aaaa aaaa a a                                                                                  . 

 
Explain why the Intermediate Value Theorem is called an 
existence theorem. 
 
aaa aaaaaaaaaaaa aaaaa aaaaaaa aaaaa aaa aaaa aa aaaaa aaa a 
aaaaaaa aaa aa aaaa aaa aaaa a aaaaaa aaa aaaaaaa aaa 
 
 
 
The Intermediate Value Theorem states that for a continuous 

function f, if x takes on all values between a and b, f(x)  

must                                              aaaa aa aaa aaaaaa aaaaaaa 

aaaa aaa aaaa                                                                   . 

 
The Intermediate Value Theorem often can be used to locate 

zeros of a function that is continuous on a closed interval. 

Specifically, if f is continuous on [a, b] and f(a) and f(b) differ in 

sign, the Intermediate Value Theorem guarantees                    aaa 

aaaaaaaaa aa aa aaaaa aaa aaaa aa a aa aaa aaaaaa    aaaaaaaa aaa 

aa                                                                                     . 

 
 
 

What you should learn 
How to understand and 
use the Intermediate 
Value Theorem 
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Explain how the bisection method can be used to approximate 
the real zeros of a continuous function. 
 
aa aaa aaaa aaaa a aaaa aaaaaa aa aaa aaaaaa aaaaaaaa aaa aaa 
aaa aaaa aaaa aaa aa aaa aaaaaaaa aaa aa a aaaaa aa aaa a aaaaa 
aaa aaaa aaa aaaa aa aaaa a aaaaaa aaa aaa aaaaaaaaa aaaaa 
aaaaaaaa aaaaaaaa aaa aaaaa aa aaaaaaaaaa aaaaaaaaa aaa 
aaaaaaaaa aaa aaa aaaaaa aaa aa aaa aaaa aa aaa aaaaaaaaaa 
 
 
Additional notes 
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Page(s) 
 
Exercises 

y

x

y

x

y
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Section 1.5 Infinite Limits 
 
Objective: In this lesson you learned how to determine infinite 

limits and find vertical asymptotes. 
 
 
I.  Infinite Limits  (Pages 83−84) 
 
A limit in which f(x) increases or decreases without bound as x 

approaches c is called an             aaaaaaaa aaaaa            . 

 
Let f be a function that is defined at every real number in some 

open interval containing c (except possibly at c itself). The 

statement lim ( )
x c

f x
→

= ∞  means                                 aaaa aaa aaaa 

a a a aaaaa aaaaaa a a a a aaaa aaaa                 aaaa a a aaaaaaaa                     

a a aa a aa a a                                         . Similarly, the statement 

lim ( )
x c

f x
→

= −∞  means                              aaaa aa aaaa a a a aaaaa 

aaaaaa a a a a aaaa aaaa aaaa a a aaaaaaa a a aa a aa a a             . 

To define the infinite limit from the left, replace 0 < |x − c| < δ 

by              a a a a a a a           . To define the infinite limit from 

the right, replace 0 < |x − c| < δ by              a a a a a a a           . 

 
Be sure to see that the equal sign in the statement lim ( )f x = ∞  

does not meant that                  aaa aaaaa aaaaaa                 ! On 

the contrary, it tells you how the limit              aaaaaaaa           by 

denoting the unbounded behavior of f(x) as x approaches c. 

 
 
II.  Vertical Asymptotes  (Pages 84−87) 
 
If f(x) approaches infinity (or negative infinity) as x approaches c 

from the right or the left, then the line x = c is a             aaaaaaaa 

aaaaaaaaa              of the graph of f. 

 
Let f and g be continuous on an open interval containing c. If 

( ) 0f c ≠ , ( ) 0g c = , and there exists an open interval containing 

c such that ( ) 0g x ≠  for all x c≠  in the interval, then the graph  

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to determine infinite 
limits from the left and 
from the right 

What you should learn 
How to find and sketch 
the vertical asymptotes of 
the graph of a function 
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of the function given by ( )( )
( )

f xh x
g x

=  has                       a 

aaaaaaaa aaaaaaaaa aa a a a                                                         . 

 
If both the numerator and denominator are 0 at x = c, you obtain 

the                     aaaaaaaaaaaaa aaaa aaa                      and you 

cannot determine the limit behavior at x = c without further 

investigation, such as simplifying the expression. 

 
Example 1: Determine all vertical asymptotes of the graph of 

2

2

9 20( )
2 15

x xf x
x x

+ +=
+ −

. 

 a a a 
 
 
 
Theorem 1.15  Let c and L be real numbers and let f and g be 
functions such that 
            lim ( )

x c
f x

→
= ∞      and     lim ( )

x c
g x L

→
=  

Complete each of the following statements about operations with 
limits. 
 
1.  Sum or difference: =±

→
)]()([lim xgxf

cx
             a           a 

 
2.  Product:   =⋅

→
)]()([lim xgxf

cx
           aa   a a a       a 

   =⋅
→

)]()([lim xgxf
cx

        a aa   a a a       a 

 

3.  Quotient:   ( )lim
( )x c

g x
f x→

=                    a                    a 

 

Example 2: Determine the limit:   
3

1lim 3
3x x→

⎛ ⎞−⎜ ⎟−⎝ ⎠
. 

 Aa 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Chapter 2 Differentiation 
 
Section 2.1 The Derivative and the Tangent Line Problem 
 
Objective: In this lesson you learned how to find the derivative of a 

function using the limit definition and understand the 
relationship between differentiability and continuity. 

 
 
 
 
 
 
 
 
 
I.  The Tangent Line Problem  (Pages 96−99) 
 
Essentially, the problem of finding the tangent line at a point P 

boils down to                       aaa aaaaaaa aa aaaaaaa aaa aaaaa aa 

aaa aaaaaaa aaaa aa aaaaa a                  . You can approximate 

this slope using                     a aaaaaa aaaa                  through the 

point of tangency (c, f(c)) and a second point on the curve  

(c + Δx, f(c + Δx)). The slope of the secant line through these two 

points is secm = . 

 
The right side of this equation for the slope of a secant line is 

called a           aaaaaaaaaa aaaaaaaa          . The denominator Δx is 

the                aaaaaa aa a             , and the numerator 

( ) ( )y f c x f cΔ = + Δ −  is the            aaaaaa aa a             . 

 
The beauty of this procedure is that you can obtain more and 

more accurate approximations of the slope of the tangent line           

by                                       aaaaaaaa aaaaaa aaaaaa aaa aaaaaa aa 

aaa aaaaa aa aaaaaaaa                                       . 

 
If f is defined on an open interval containing c, and if the limit 

0 0

( ) ( )lim lim
x x

y f c x f c m
x xΔ → Δ →

Δ + Δ −= =
Δ Δ

 exists, then the line passing  

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
How to find the slope of 
the tangent line to a curve 
at a point 

 aaa a aaa a 

aaa 

Important Vocabulary  Define each term or concept. 
 
Differentiation  aaa aaaaaaa aa aaaaaaa aaa aaaaaaaaaa aa a aaaaaaaaa 
 
Differentiable  a aaaaaaaa aa aaaaaaaaaaaaaa aa a aa aaa aaaaaaaaaa aaaaaa aa aa 
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through (c, f(c)) with slope m is                        aaaaaa aaaa aa aaa 

aaaaa aa a aa aaa aaaaa aaa aaaaa                                              . 

 
The slope of the tangent line to the graph of f at the point (c, f(c)) 

is also called                                     aaa aaaaa aa aaa aaaaa aa a 

aa a a a                                    . 

Example 1: Find the slope of the graph of ( ) 9
2
xf x = −  at the 

point (4, 7). 
a aaa  

 
 
Example 2: Find the slope of the graph of 2( ) 2 3f x x= −  at 

the point (−1, −1). 
a 

 
 
The definition of a tangent line to a curve does not cover the 

possibility of a vertical tangent line. If f is continuous at c and 

0

( ) ( )lim
x

f c x f c
xΔ →

+ Δ − = ∞
Δ

 or 
0

( ) ( )lim
x

f c x f c
xΔ →

+ Δ − = −∞
Δ

, the 

vertical line x = c passing through (c, f(c)) is             a aaaaaaaa 

aaaaaaa aaaa                          to the graph of f. 

 
 
II.  The Derivative of a Function  (Pages 99−101) 
 
The                aaaaaaaaaa aa a aa a                        is given by 

0

( ) ( )'( ) lim
x

f x x f xf x
xΔ →

+ Δ −=
Δ

, provided the limit exists. For all x 

for which this limit exists, f ′  is             a aaaaaaa aa a               . 

 
The derivative of a function of x gives the               aaaaa aa aaa 

aaaaaaa aaaa              to the graph of f at the point (x, f(x)), 

provided that the graph has a tangent line at this point. 

 
A function is differentiable on an open interval (a, b) if          a 

aa aaaaaaaaaaaaaa aa aaaaaa aa aaa aaaaaaaa                                . 

 
 

What you should learn 
How to use the limit 
definition to find the 
derivative of a function 
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Example 3: Find the derivative of 2( ) 4 5f t t= + . 
a aaaa a aa  

 
 
 
III.  Differentiability and Continuity  (Pages 101−103) 
 
Name some situations in which a function will not be 
differentiable at a point. 
 
a aaaaa aaaaaa a aaaaaaaa aaaaaaa aaaa aa a aaaaa aaaa a aaaaa 
aaaaa 
 
 
 
If a function f is differentiable at x = c, then                          a aa 

aaaaaaaaaa aa a a a                    . 

 
 
Complete the following statements. 
 
1. If a function is differentiable at x = c, then it is continuous at 

x = c. So, differentiability             aaaaaa               continuity. 

 
2. It is possible for a function to be continuous at x = c and not 

be differentiable at x = c. So, continuity                    aaaa aaa 

aaaaa                 differentiability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to understand the 
relationship between 
differentiability and 
continuity 
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Additional notes 
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Page(s) 
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Section 2.2 Basic Differentiation and Rates of Change 
 
Objective: In this lesson you learned how to find the derivative of a 

function using basic differentiation rules. 
 
 
I.  The Constant Rule  (Page 107) 
 
The derivative of a constant function is       ssss         . 
 

If c is a real number, then [ ]d c
dx

=           s           . 

 
II.  The Power Rule  (Pages 108−109) 
 
The Power Rule states that if n is a rational number, then the 
function ( ) nf x x=  is differentiable and  

nd x
dx

⎡ ⎤ =⎣ ⎦                  sssss              . For f to be differentiable at         

x = 0, n must be a number such that 1nx −  is                 sssssss ss ss 

ssssssss ssssssssss s                                               . 

 

Also, [ ]d x
dx

=                 s              . 

 

Example 1: Find the derivative of the function 3

1( )f x
x

= . 

 s ssss 
 
 
Example 2: Find the slope of the graph of 5( )f x x=  at x = 2. 
 ss 
 
 
III.  The Constant Multiple Rule  (Pages 110−111) 
 
The Constant Multiple Rule states that if f is a differentiable 

function and c is a real number then cf  is also differentiable and 

[ ]( )d cf x
dx

=                  ss ssss                     . 

 
Informally, the Constant Multiple Rule states that          sssssssss 

sss ss ssssssss sss ss sss sssssssssssssss ssssssss             ssss ss sss 

sssssssss ssssss ss sss sssssssssss                                      . 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find the 
derivative of a function 
using the Constant Rule 

What you should learn 
How to find the 
derivative of a function 
using the Power Rule 

What you should learn 
How to find the 
derivative of a function 
using the Constant 
Multiple Rule 
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Example 3: Find the derivative of 2( )
5
xf x =  

 sss 
 
The Constant Multiple Rule and the Power Rule can be 

combined into one rule. The combination rule is 

nd cx
dx

⎡ ⎤ =⎣ ⎦            ssssss                     . 

 

Example 4: Find the derivative of 5

2
5

y
x

=  

 s ssss 
 
 
IV.  The Sum and Difference Rules  (Page 111) 
 
The Sum and Difference Rules of Differentiation state that the 

sum (or difference) of two differentiable functions f and g is 

itself differentiable. Moreover, the derivative of f g+  (or 

f g− ) is the sum (or difference) of the derivatives of f and g. 

That is, [ ]( ) ( )d f x g x
dx

+ =                 s ssss s sssss                      s 

and [ ]( ) ( )d f x g x
dx

− =                 s ssss s sssss                      s 

 
Example 5: Find the derivative of 3 2( ) 2 4 3 1f x x x x= − + −  
 sss s ss ss 
 
 
V.  Derivatives of Sine and Cosine Functions  (Page 112) 
 

[ ]sind x
dx

=                 sss s                  s 

[ ]cosd x
dx

=                s sss s                s 

 
 
Example 6: Differentiate the function 2 2cosy x x= − . 
 ss s ss s ssss s 
 
 
 

What you should learn 
How to find the 
derivative of a function 
using the Sum and 
Difference Rules 

What you should learn 
How to find the 
derivative of the sine 
function and of the cosine 
function 



Section 2.2     Basic Differentiation and Rates of Change 37 

Larson/Edwards   Calculus 9e   Notetaking Guide 
Copyright © Cengage Learning. All rights reserved. 

VI.  Rates of Change  (Pages 113−114) 
 
The derivative can also be used to determine                  sss ssss ss 

ssssss ss sss ssssssss ssss sssssss ss sssssss                        . 

 
Give some examples of real-life applications of rates of change. 
 
ssssssssss ssssss ssssss ssssssssss ssssss sssss ssss ssssss sssssssss 
sss sssssssssssss  
 
 
 

The function s that gives the position (relative to the origin) of an 

object as a function of time t is called a       ssssssss ssssssss      . 

The average velocity of an object that is moving in a straight 

line is found as follows. 

     Average velocity =  =  

 
Example 7: If a ball is dropped from the top of a building that 

is 200 feet tall, and air resistance is neglected, the 
height s (in feet) of the ball at time t (in seconds) is 
given by 216 200s t= − + . Find the average 
velocity of the object over the interval [1, 3]. 

 s ss ssss sss ssssss 
 
 
 
 
 
 
If ( )s s t=  is the position function for an object moving along a 

straight line, the (instantaneous) velocity of the object at time t is 

( )v t =   sss   =                sssss                    . 

 
In other words, the velocity function is the      ssssssssss ss     the 

position function. Velocity can be                       sssssssss sssss ss 

ssssssss                        . The            sssss          of an object is the 

absolute value of its velocity. Speed cannot be        ssssssss       . 

 
 

What you should learn 
How to use derivatives to 
find rates of change 

 ssssss ss sssssssss
ssssss ss sssss 

sss

sss

sssss 

 sss s sss s sssss 

sss 
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Example 8: If a ball is dropped from the top of a building that 
is 200 feet tall, and air resistance is neglected, the 
height s (in feet) of the ball at time t (in seconds) is 
given by 2( ) 16 200s t t= − + . Find the velocity of 
the ball when t = 3. 

 s ss ssss sss ssssss 
 
 
 
 
 
The position function for a free-falling object (neglecting air 

resistance) under the influence of gravity can be represented by the 

equation            ssss s ssssss s sss s ss                      , where s0 is the 

initial height of the object, v0 is the initial velocity of the object, 

and g is the acceleration due to gravity. On Earth, the value of g is  

                    sssssssssssss sss ssss sss ssssss sss ssssss ss ssss ssssss 

sss ssssss sss ssssss                                                      . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 2.3 Product and Quotient Rules and Higher-Order 
  Derivatives 
 
Objective: In this lesson you learned how to find the derivative of a 

function using the Product Rule and Quotient Rule. 
 
 
I.  The Product Rule  (Pages 119−120) 
 
The product of two differentiable functions f and g is itself 

differentiable. The Product Rule states that the derivative of the 

fg  is equal to                       sss sssss ssssssss sssss sss ssssssssss 

ss sss sssssss ssss sss ssssss ssssssss sssss sss       ssssssssss ss sss 

sssss                                        . That is,  

[ ]( ) ( ) ( ) ( ) ( ) ( )d f x g x f x g x g x f x
dx

′ ′= + . 

 
Example 1: Find the derivative of 2(4 1)(2 3)y x x= + − . 
 sssss s ssss s sss s s 
 
 
 
 
 
 
The Product Rule can be extended to cover products that have 

more than two factors. For example, if f, g, and h are 

differentiable functions of x, then 

[ ]( ) ( ) ( )d f x g x h x
dx

=         s ssssssssssss s sssss ssssssss s sssssssssssss 

 
Explain the difference between the Constant Multiple Rule and 
the Product Rule. 
 
sss ssssssssss sssssss sssss sss sssss ss ssss sss ssssssss ssssssss 
ssss sssss ssss sss sssssss ss s ssssssss sss s ssssssss sssssssss 
sssssss sss sssssss ssss sssss ssss sss sssssss ss sss ssssssss 
sssssssssss  
 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find the 
derivative of a function 
using the Product Rule 
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II.  The Quotient Rule  (Pages 121−123) 
 
The quotient /f g  of two differentiable functions f and g is 

itself differentiable at all values of x for which ( ) 0g x ≠ . The 

derivative of /f g  is given by                      sss sssssssssss sssss 

sss ssssssssss ss sss sssssssss   sssss   sss        sssssssss  sssss  sss  

ssssssssss  ss  sss sssssssssss                                    , all divided 

by                  sss ssssss ss sss sssssssssss              . 

This is called the           ssssssss ssss               , and is given by 

[ ]2
( ) ( ) ( ) ( ) ( ) , ( ) 0
( ) ( )

d f x g x f x f x g x g x
dx g x g x

′ ′⎡ ⎤ −= ≠⎢ ⎥
⎣ ⎦

. 

 

Example 2: Find the derivative of 2 5
3
xy

x
+= . 

 s sssssss 
 
 
 
 
With the Quotient Rule, it is a good idea to enclose all factors 

and derivatives                  ss sssssssssss                 and to pay 

special attention to                    sss sssssssssss ssssssss ss sss 

sssssssss                                     . 

 
 
III.  Derivatives of Trigonometric Functions  (Pages 123−124) 
 

[ ]tand x
dx

=                 ssss s                 s 

[ ]cotd x
dx

=              s ssss s                s 

[ ]secd x
dx

=               sss s sss s            s 

[ ]cscd x
dx

=            s sss s sss s            s 

 
Example 3: Differentiate the function ( ) sin secf x x x= . 
 ss sss s sss s sss s sss s s sss s sss s 
 

What you should learn 
How to find the 
derivative of a function 
using the Quotient Rule 

What you should learn 
How to find the 
derivative of a 
trigonometric function 
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IV.  Higher-Order Derivatives  (Page 125) 
 
The derivative of ( )f x′  is the second derivative of ( )f x  and is 

denoted by            s ssss               . The derivative of ( )f x′′  is the  

          sssss ssssssssss              of ( )f x  and is denoted by f ′′′ . 

These are examples of           ssssssssssss sssssssssss              of 

( )f x . 

 
The following notation is used to denoted the      sssss ssssssssss        s 

of the function ( )y f x= : 

6

6

d y
dx

    6[ ]xD y     (6)y     
6

6 [ ( )]d f x
dx

    (6) ( )f x  

 
 
Example 4: Find (5)y  for 7 52y x x= − . 
 ssssss s sss 
 
 
 
 
 
 
 
Example 5: On the moon, a ball is dropped from a height of 

100 feet. Its height s (in feet) above the moon’s 

surface is given by 227 100
10

s t= − + . Find the 

height, the velocity, and the acceleration of the 
ball when t = 5 seconds. 

 sssssss  ssss ssss sssss sss sssssss 
 sssssssss  sss ssss sss ssssss 
 sssssssssssss  sssss ssss sss ssssss sssssss 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to find a higher-
order derivative of a 
function 
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Example 6: Find y′′′  for siny x= . 
 ssss s s sss s 
 
 
 
 
 
Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 2.4 The Chain Rule 
 
Objective: In this lesson you learned how to find the derivative of a 

function using the Chain Rule and General Power Rule. 
 
 
I.  The Chain Rule  (Pages 130−132) 
 
The Chain Rule, one of the most powerful differentiation rules, 

deals with            sssssssss                 functions. 

 
Basically, the Chain Rule states that if y changes dy/du times as 

fast as u, and u changes du/dx times as fast as x, then y changes 

                  ssssssssssssss                 times as fast as x. 
 
The Chain Rule states that if ( )y f u=  is a differentiable 

function of u, and ( )u g x=  is a differentiable function of x, then 

( ( ))y f g x=  is a differentiable function of x, and  

dy
dx

= �  or, equivalently,  

 

[ ]( ( ))d f g x
dx

=                    s ssssssssssss                       . 

 
When applying the Chain Rule, it is helpful to think of the 

composite function f go  as having two parts, an inner part and 

an outer part. The Chain Rule tells you that the derivative of 

( )y f u=  is the derivative of the           sssss ssssssss          (at the 

inner function u) times the derivative of the                           sssss 

ssssssss                     . That is, y′ =               s ssss s ss                  . 

 
Example 1: Find the derivative of 2 5(3 2)y x= − . 
 sssssss s sss 
 
 
 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find the 
derivative of a composite 
function using the Chain 
Rule 

sss 
sss 

sss 
sss 
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II.  The General Power Rule  (Pages 132−133) 
 
The General Power Rule is a special case of the               sssss 

ssss                . 

 
The General Power Rule states that if [ ]( ) ny u x= , where u is a 

differentiable function of x and n is a rational number, then                          

dy
dx

=        ssssssssss  ss                or, equivalently,  

nd u
dx

⎡ ⎤ =⎣ ⎦            sssssss          s 

 

Example 2: Find the derivative of 3

4
(2 1)

y
x

=
−

. 

          ss 
 s  ssss 
      sss s sss 
 
 
 
 
 
 
 
 
 
III.  Simplifying Derivatives  (Page 134) 
 

Example 3: Find the derivative of 
2

3 2

3
(1 )

xy
x

=
−

 and simplify. 

 ss s ssssss s ss s ss s ssss 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to find the 
derivative of a function 
using the General Power 
Rule 

What you should learn 
How to simplify the 
derivative of a function 
using algebra 

sss 
sss 
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IV.  Trigonometric Functions and the Chain Rule 
        (Pages 135−136) 
 
Complete each of the following “Chain Rule versions” of the 
derivatives of the six trigonometric functions. 
 

[ ]sind u
dx

=                 ssss ss ss                  s 

[ ]cosd u
dx

=                s ssss ss ss                s 

[ ]tand u
dx

=                 sssss ss ss                  s 

[ ]cotd u
dx

=              s sssss ss ss                 s 

[ ]secd u
dx

=               ssss s sss ss ss            s 

[ ]cscd u
dx

=            s ssss s sss ss ss             s 

 
Example 4: Differentiate the function sec4y x= . 
 sssss s s sss ss sss ss 
 
 
 
 
 
 
 
 
 
Example 5: Differentiate the function 2 cos(2 1)y x x= − + . 
 sssss s ss s sssssss s ss 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to find the 
derivative of a 
trigonometric function 
using the Chain Rule 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 2.5 Implicit Differentiation 
 
Objective: In this lesson you learned how to find the derivative of a 

function using implicit differentiation. 
 
 
I.  Implicit and Explicit Functions  (Page 141) 
 
Up to this point in the text, most functions have been expressed 

in explicit form ( )y f x= , meaning that            sss ssssssss s ss 

ssssssssss sssssss ss s ssssssss ss s                           . However, 

some functions are only            sssssss            by an equation. 

 
Give an example of a function in which y is implicitly defined as a 

function of x. 

sssssss ssss sssss sss ssssssss sss s s ss ss ssssssss sssss  
 
 
 
Implicit differentiation is a procedure for taking the derivative 

of an implicit function when you are unable to              sssss sss s 

ss s ssssssss ss s                                 . 

 

To understand how to find dy
dx

 implicitly, realize that the 

differentiation is taking place          ssss sssssss ss s         . This 

means that when you differentiate terms involving x alone,     sss 

sss sssssssssssss ss sssss                   . However, when you 

differentiate terms involving y, you must apply                sss sssss 

ssss             s because you are assuming that y is defined  

       ssssssssss         as a differentiable function of x. 

 
Example 1: Differentiate the expression with respect to x: 
 24x y+  
s             ss 
ss s ss ss 
s             ss 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to distinguish 
between functions written 
in implicit form and 
explicit form 
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II.  Implicit Differentiation  (Pages 142−145) 
 
Consider an equation involving x and y in which y is a 
differentiable function of x. List the four guidelines for applying 
implicit differentiation to find dy/dx. 
 
1.   sssssssssssss ssss sssss ss sss ssssssss ssss sssssss ss ss 
 
 
2.   sssssss sss sssss sssssssss sssss ss sss ssss ssss ss sss ssssssss 
sss ssss sss sssss sssss ss sss sssss ssss ss sss sssssssss 
 
 
 
3.   ssssss sssss sss ss sss ssss ssss ss sss sssssssss 
 
 
4.   sssss sss ssssss 
 
 
 
 
Example 2: Find dy/dx for the equation 2 24 1y x− = . 

 sssss s ssssss  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to use implicit 
differentiation to find the 
derivative of a function 
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Section 2.6 Related Rates 
 
Objective: In this lesson you learned how to find a related rate. 
 
 
I.  Finding Related Variables  (Page 149) 
 
Another important use of the Chain Rule is to find the rates of 

change of two or more related variables that are changing with 

respect to                ssss                   . 

 
Example 1: The variables x and y are differentiable functions of 

t and are related by the equation 32 4y x x= − + . 
When x = 2, dx/dt = −1. Find dy/dt when x = 2. 

 sss 
 
 
 
II.  Problem Solving with Related Rates  (Pages 150−153) 
 
List the guidelines for solving a related-rate problems. 
 
1.   ssssssss sss sssss ssssssssss sss ssssssssss ss ss sssssssssss 
ssss s ssssss sss sssss sss sssssssssss 
 
 
2.   sssss ss ssssssss sssssssss sss sssssssss sssss sssss ss ssssss 
ssssss sss sssss ss sss ss ss sssssssssss 
 
 
3.   sssss sss sssss sssss ssssssssss sssssssssssss ssss sssss ss sss 
ssssssss ssss sssssss ss ssss ss 
 
 
4.   sssss ssssssssss ssss ss ssssssssss ssss sss sssssssss ssssssss 
sss sssss ssssss ss sss sssssssss sss sssss sssss ss sssssss ssss sssss 
sss sss ssssssss ssss ss sssssss 
 
 
 
 
Example 2: Write a mathematical model for the following 

related-rate problem situation: 
 The population of a city is decreasing at the rate of 

100 people per month. 
 s s ssssss ss sssssssssss sssss s s sss ssssss sss sssss 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find a related 
rate 

What you should learn 
How to use related rates 
to solve real-life 
problems 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Chapter 3 Applications of Differentiation 
 
Section 3.1 Extrema on an Interval 
 
Objective: In this lesson you learned how to use a derivative to locate 

the minimum and maximum values of a function on a closed 
interval. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I.  Extrema of a Function  (Page 164) 
 
Let f be defined on an interval I containing c. 

1.  ( )f c  is the minimum of f on I if                  ssss s ssss sss sss 

s ss s                              . 

 
2.  ( )f c  is the maximum of f on I if                  ssss s ssss sss 

sss s ss s                         . 

 
The minimum and maximum of a function on an interval are the  

               sssssss ssssss                   , or extrema (the singular for 

of extrema is              ssssssss              ), of the function on the 

interval. The minimum and maximum of a function on an 

interval are also called the                              ssssssss sssssss sss 

ssssssss sssssss                , or the                        ssssss sssssss sss 

ssssss sssssss                     , on the interval. 

 
The Extreme Value Theorem states that if f is continuous on a 

closed interval [a, b], then                          s sss ssss s sssssss sss 

s sssssss ss sss ssssssss                                                . 

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
How to understand the 
definition of extrema of a 
function on an interval 

Important Vocabulary  Define each term or concept. 
 
Relative maximum  ss sssss ss ss ssss ssssssss ssssssssss s ss sssss ssss ss s ssssssss 
ssss ssss ss ssssss s ssssssss sssssss ss ss ss sss sss sss ssss s sss s ssssssss sssssss ss sss 
ssssss ssss sssss ss s sssss ssssssss 
 
Relative minimum  ss sssss ss ss ssss ssssssss ssssssssss s ss sssss ssss ss s ssssssss 
ssss ssss ss ssssss s ssssssss sssssss ss ss ss sss sss sss ssss s sss s ssssssss sssssss ss sss 
ssssss ssss sssss ss s sssss ssssssss 
 
Critical number  sss s ss sssssss ss ss ss s ssss s s ss ss s ss sss ssssssssssssss ss ss ssss 
s ss s ssssssss ssssss ss s 
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II.  Relative Extrema and Critical Numbers  (Pages 165−166) 
 
If f has a relative minimum or relative maximum when x = c, 

then c is a               ssssssss ssssss                of f. 

 
 
III.  Finding Extrema on a Closed Interval  (Pages 167−168) 
 
To find the extrema of a continuous function f on a closed 
interval [a, b], use the following steps. 
 
1.   ssss sss ssssssss sssssss ss s ss sss sss 
 
2.   ssssssss s ss ssss ss sss ssssssss sssssss ss sss sss 
 
3.   ssssssss s ss ssss ssssssss ss sss sss 
 
4.   sss sssss ss sssss ssssss ss sss ssssssss sss ssssssss ss sss 
ssssssss 
 
 
Example 1: Find the extrema of the function 

3 2( ) 6 15 2f x x x x= + − +  on the interval [−6, 6]. 
 sss ssssssss sssssss ss sss ssssss ss s s ss sss sss 

ssssssss sssssss ss ss ssssss ss s s ss 
 
 
 
The critical numbers of a function need not produce         ssssssss 

sssssss                                   . 

 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to find extrema on a 
closed interval 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to understand the 
definition of relative 
extrema of a function on 
an open interval 
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Section 3.2 Rolle’s Theorem and the Mean Value Theorem 
 
Objective: In this lesson you learned how many of the results in this 

chapter depend on two important theorems called 
Rolle’s Theorem and the Mean Value Theorem. 

 
 
I.  Rolle’s Theorem  (Pages 172−173) 
 
The Extreme Value Theorem states that a continuous function on 

a closed interval [a, b] must have                      ssss s sssssss sss s 

sssssss ss sss ssssssss                                        . Both of these 

values, however, can occur at            sss sssssssss                      . 

Rolle’s Theorem gives conditions that guarantee the existence 

of an extreme value in                                sss ssssssss ss s ssssss 

ssssssss                       . 

 
The statement of Rolle’s Theorem says:    Let f be continuous on 

the closed interval [a, b] and differentiable on the open interval 

(a, b). If ( ) ( )f a f b= , then there is                ss sssss sss ssssss s 

ss sss ss ssss ssss s ssss s s                                                . 

 
If the conditions of Rolle’s Theorem are satisfied, then there 

must be at least one x-value between a and b at which the graph 

of f has                    s ssssssssss sssssss                          . 

Alternatively, Rolle’s Theorem states that if f satisfies the 

conditions of the theorem, there must be at least one point 

between a and b at which the derivative is            s             . 

 
 
II.  The Mean Value Theorem  (Pages 174−175) 
 
The Mean Value Theorem states that if f is continuous on  

                 sss ssssss ssssssss sss ss                 and differentiable 

on                   sss ssss ssssssss sss ss                       , then there 

exists                   s ssssss s ss sss ss                           such that 

( ) ( )( ) f b f af c
b a

−′ =
−

. 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand and 
use Rolle’s Theorem 

What you should learn 
How to understand and 
use the Mean Value 
Theorem 
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The Mean Value Theorem has implications for both basic 

interpretations of the derivative. Geometrically, the theorem 

guarantees  the existence of                                     s sssssss ssss 

ssss ss ssssssss ss sss ssssss ssss sssssss ssssss          sss sssss sss           

sss sssss                                            . In terms of rates of change, 

the Mean Value Theorem implies that there must be          s sssss 

ss sss ssss ssssssss sss ss ss sssss sss sssssssssssss ssss ss    ssssss 

ss sssss ss sss sssssss ssss ss ssssss ssss sss ssssssss  sss             ss 

                                                        s. 

 
A useful alternative form of the Mean Value Theorem is as 

follows:  If f is continuous on [a, b] and differentiable on (a, b), 

then there exists a number c in (a, b) such that  

                     ssss s ssss s ss s ss s ssss                      . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 3.3 Increasing and Decreasing Functions and the 
  First Derivative Test 
 
Objective: In this lesson you learned how to use the first derivative 

to determine whether a function is increasing or 
decreasing. 

 
 
 
 
 
 
 
 
 
 
 
I.  Increasing and Decreasing Functions  (Pages 179−180) 
 
A function is increasing if its graph moves             aa            as x 

moves          aa aaa aaaaa          . A function is decreasing if its 

graph moves           aaaa           as x moves          aa aaa aaaa       . 

 
Let f be a function that is continuous on the closed interval [a, b] 
and differentiable on the open interval (a, b). 
 
If ( ) 0f x′ >  for all x in (a, b), then f is        aaaaaaaaaa        on [a, b]. 
 
If ( ) 0f x′ <  for all x in (a, b), then f is        aaaaaaaaaa        on [a, b]. 
 
If ( ) 0f x′ =  for all x in (a, b), then f is          aaaaaaaa          on [a, b]. 
 
The first of these tests for increasing and decreasing functions 

can be interpreted as follows:  if the first derivative of a function 

is positive for all values of x in an interval, then the function is  

        aaaaaaaaaa        on that interval. 

 
Interpret the other two tests in a similar way. 
 
aa aaa aaaaa aaaaaaaaaa aa a aaaaaaaa aa aaaaaaaa aaa aaa aaaaaa aa a aa 
aa aaaaaaaaa aaaa aaa aaaaaaaa aa aaaaaaaaaa aa aaaa aaaaaaaaa aa aaa 
aaaaa aaaaaaaaaa aa aaaaa aa aaaa aaa aaa aaaaaa aa a aa aa aaaaaaaaa 
aaaa aaa aaaaaaaa aa aaaaaaaa aa aaaa aaaaaaaaa  
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to determine 
intervals on which a 
function is increasing or 
decreasing 

Important Vocabulary  Define each term or concept. 
 
Increasing function  a aaaaaaaa a aa aaaaaaaaaa aa aa aaaaaaaa aa aaa aaa aaa 
aaaaaaa aa aaa aa aa aaa aaaaaaaaa aa a aa aaaaaaa aaaaa a aaaaaa  
 
Decreasing function  a aaaaaaaa a aa aaaaaaaaaa aa aa aaaaaaaa aa aaa aaa aaa 
aaaaaaa aa aaa aa aa aaa aaaaaaaaa aa a aa aaaaaaa aaaaa a aaaaaa 
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Example 1: Find the open intervals on which the function is increasing 
or decreasing:  2( ) 10 21f x x x= − + −  
aaaaaaaaaa aa aaaa aaa aaaaaaaaaa aa aaa aa  

 
 
 
Let f be a continuous function on the interval (a, b). List the 
steps for finding the intervals on which f is increasing or 
decreasing. 
 
1.   aaaaaa aaa aaaaaaaa aaaaaaa aa a aa aaa aaa aaa aaa aaaaa 
aaaaaaa aa aaaaaaaaa aaaa aaaaaaaaaa 
 
2.   aaaaaaaaa aaa aaaa aa a aaaa aa aaa aaaa aaaaa aa aaaa aa aaa 
aaaa aaaaaaaaaa 
 
3.   aaa aaa aaaa aaa aaaaaaaaaa aaa aaaaaaaaaa aaaaaaaaa aa 
aaaaaaaaa aaaaaaa a aa aaaaaaaaaa aa aaaaaaaaaa aa aaaa 
aaaaaaaaa 
 
 
 
A function is strictly monotonic on an interval if                     aa 

aa aaaaaa aaaaaaaaaa aa aaa aaaaaa aaaaaaaa aa     aaaaaaaaaa aa 

aaa aaaaaa aaaaaaaa                      . 

 
 
II.  The First Derivative Test  (Pages 181−185) 
 
Let c be a critical number of a function f that is continuous on an 
open interval I containing c. The First-Derivative Test states 
that if f is differentiable on the interval (except possibly at c), 
then ( )f c  can be classified as follows: 
 

1. If ( )f x′  changes from negative to positive at c, then f  

has a               aaaaaaaa aaaaaaa                 at (c, f(c)). 

2. If ( )f x′  changes from positive to negative at c, then f  

has a               aaaaaaaa aaaaaaa                 at (c, f(c)). 

3. If ( )f x′  is positive on both sides of c or negative on 

both sides of c, then ( )f c  is              aaaaaaa a aaaaaaaa 

aaaaaaa aaa a aaaaaaaa aaaaaaa               . 

 
 
 

What you should learn 
How to apply the First 
Derivative Test to find 
relative extrema of a 
function 



Section 3.3     Increasing and Decreasing Functions and the First Derivative Test 57 

Larson/Edwards   Calculus 9e   Notetaking Guide 
Copyright © Cengage Learning. All rights reserved. 

In your own words, describe how to find the relative extrema of 
a function f. 
 
aaaaaaa aaa aaaaa aaaaa aa aaaaaaa aaa aaaaaaaa aaaaaaa aa aa 
aa aa aaa aaaa aaa aaaaa aaaaaaaaaa aa aa aaa aaaa aaaaaaaaaa 
aaaaa aa aaaa aaa aaaaaa aaaaa aaaaaaaaaa aa aaaa aa aaa 
aaaaaaaa aaa aaaaa aaa aaaaaaaaaa aa aaaaaaaaaa aaa aaa 
aaaaaaaa aaaaaaaa aaaaa aaaaa aaaaaaaa aaaaaaaa aaaa aaa 
aaaaaaa aaaa aaaaaaaaa aaa aaaa aaa aaa aaaa aa aaa aaaaaaaaaa 
aa aaaa aaaaaaaaa aaaa aaa aaa aaaaaaaaaaaaaaaa aaaa aa 
aaaaaaaa aaa aaaaaaaa aaaaa aaaaaaaaaa aaaa aaaa aaaaaaaa 
aaaaaa aa a aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aa aaaaaaaa  
 
 
 
 
 
 
Example 2: Find all relative extrema of the function 

3 2( ) 7 38 240f x x x x= − − + . 
 aaa aaaaaaaa aaaaaaa aa aa aaaaaaa aaaaaaa aaa 

aaa aaaaaaaa aaaaaaa aa aa aaaaaa aaaaaaaa 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 3.4 Concavity and the Second Derivative Test 
 
Objective: In this lesson you learned how to use the second 

derivative to determine whether the graph of a function 
is concave upward or downward. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I.  Concavity  (Pages 190−192) 
 
Let f be differentiable on an open interval I. If the graph of f is 

concave upward, then the graph of f lies        aaaaa        all of its 

tangent lines on I. 

 
Let f be differentiable on an open interval I. If the graph of f is 

concave downward, then the graph of f lies          aaaaa          all 

of its tangent lines on I. 

 
As a test for concavity, let f be a function whose second 
derivative exists on an open interval I. 
 

1. If ( ) 0f x′′ >  for all x in I, then the graph of f is     aaaaaaa 
aaaaaa          a in I. 

 
2. If ( ) 0f x′′ <  for all x in I, then the graph of f is     aaaaaaa 

aaaaaaaa    a in I. 
 
In your own words, describe how to apply the Concavity Test. 
 
aaaaaa aaa aaaaaaaa aa aaaaa a aaaaa a aa  a aaaaa aaaa aaa 
aaaaaa aa aaaaa aaa aaaaaaaa aa aaa aaaaaaaaaaa aaa aaaaa 
aaaaaaaa aa aaaaaaaaa aaa aaaa aaaaaaaaaa aaaaa aaaa aaa aaaa 
aa a aaaaa aa aaaa aaaa aaaaaaaaa 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to determine 
intervals on which a 
function is concave 
upward or concave 
downward 

Important Vocabulary  Define each term or concept. 
 
Concave upward  aaa a aa aaaaaaaaaaaaaa aa aa aaaa aaaaaaaa aa aaa aaaaa aa a aa 
aaaaaaa aaaaaa aa a aa a aaa aaaaaaaaaa aa aaa aaaaaaaaa  
 
Concave downward  aaa a aa aaaaaaaaaaaaaa aa aa aaaa aaaaaaaa aa aaa aaaaa aa a 
aa aaaaaaa aaaaaaaa aa a aa a aaa aaaaaaaaaa aa aaa aaaaaaaaa 
 
Point of inflection  aaa a aa a aaaaaaaa aaaa aa aaaaaaaaaa aa aa aaaa aaaaaaaa aaa 
aaa a aa a aaaaa aa aaa aaaaaaaaa aa aaa aaaaa aa a aaa a aaaaaaa aaaa aa aaaa aaaaa 
aaa aaaaaa aaaa aaaa aaaaa aa a aaaaa aa aaaaaaaaaa aa aaa aaaaa aa a aa aaa 
aaaaaaaaa aa a aaaaaaa aaaa aaaaaa aa aaaaaaaa aaa aaaaaaaa aa aaaaaaa aa aaa aaaaaa 
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Example 1: Describe the concavity of the function 
2( ) 1 3f x x= − . 

 aaaaaaa aaaaaaaa aa aaa aaaaaa aaaa aaaa aaaaaaa 
aaa aaaaaa aaaaaaaaaa aa aaaaaaaa aaa aaa aa 

 
 
 
II.  Points of Inflection  (Pages 192−193) 
 
To locate possible points of inflection, you can determine  

           aaa aaaaaa aa a aaa aaaaa a aaaaa a a aa          a aaaaa 

aaaa aaa aaaaa                               . 

 
State Theorem 3.8 for Points of Inflection. 
 
aa aaa aaaaa aa a aaaaa aa aaaaaaaaaa aa aaa aaaaa aa aa aaaa aaaaaa a aaaaa a a aa a aa aaaa aaa a 

 
Example 2: Find the points of inflection of 

4 3 21( ) 10 48 4
2

f x x x x= − + − + . 

 aaa aaaaa aaa aaaaaa aa aaaaaaaaaa aa a a a aaa a a aa 
 
 
The converse of Theorem 3.8 is             aaa aaaaaaaa aaaa          . 

That is, it is possible for the second derivative to be 0 at a point 

that is                       aaa a aaaaa aa aaaaaaaaaa                    . 

 
 
III.  The Second-Derivative Test  (Page 194) 
 
Let be a function such that ( ) 0f c′ =  and the second derivative 
of f exists on an open interval containing c. Then the Second-
Derivative Test states: 
 
1.   aa a aaaaa a aa aaaa a aaa a aaaaaaaa aaaaaaa aa aaa aaaaaa 
 
2.   aa a aaaaa a aa aaaa a aaa a aaaaaaaa aaaaaaa aa aaa aaaaaa 
 
aa a aaaaa a aa aaa aaaa aaaaaa aaaa aaa a aaa aaaa a aaaaaaaa aaaaaaaa a aaaaaaaa aaaaaaaa aa 
aaaaaaaa aa aaaa aaaaaa aaa aaa aaa aaa aaaaaaaaaaaaaaaa aaaaa 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to find any points of 
inflection of the graph of 
a function 

What you should learn 
How to apply the Second 
Derivative Test to find 
relative extrema of a 
function 
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Section 3.5 Limits at Infinity 
 
Objective: In this lesson you learned how to find horizontal 

asymptotes of the graph of a function. 
 
 
I.  Limits at Infinity  (Page 198) 
 
To say that a statement is true as x increases without bound 

means that for some (large) real number M, the statement is true 

for all x in the interval                aaa  a a aa                . 

 
Let L be a real number. The definition of limit at infinity states 

that 

1. lim ( )
x

f x L
→∞

=  means                       aaaa aaa aaaa a a 

a aaaaa aaaaa aa a a a aaaa aaaa a         aaaa a aa a a 

aaaaaaaa a a a                                                             . 

2. lim ( )
x

f x L
→−∞

=  means                       aaaa aaa aaaa a a 

a aaaaa aaaaa aa a a a aaaa aaaa           aaaaa a aa a a 

aaaaaaaa a a a                                                             . 

 
 
II.  Horizontal Asymptotes  (Pages 199−203) 
 
The line y = L is a             aaaaaaaaaa aaaaaaaaa         of the 

graph of f  if lim ( )
x

f x L
→−∞

=  or lim ( )
x

f x L
→∞

= . 

 
Notice that from this definition, if follows that the graph of a 

function of x can have at most                         aaa aaaaaaaaaa 

aaaaaaaaaaaaaa aa aaa aaaaa aaa aaa aa aaa aaaa              . 

 
If r is a positive rational number and c is any real number, then 

lim rx

c
x→∞

=             a                 . Furthermore, if rx  is defined when 

x < 0, then lim rx

c
x→ −∞

=              a                 . 

 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to determine (finite) 
limits at infinity 

What you should learn 
How to determine the 
horizontal asymptotes, if 
any, of the graph of a 
function 
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Example 1: Find the limit:  2

3lim 2
x x→∞

⎛ ⎞+⎜ ⎟
⎝ ⎠

 

 aaa aaaaa aa aa 
 
 
 
 
 
If an indeterminate form            a a a               is encountered 

while finding a limit at infinity, you can resolve this problem by 

                                            aaaaaaaa aaaa aaa aaaaaaaaa aaa aaa 

aaaaaaaaaaa aa a                                 . 

 
Complete the following guidelines for finding limits at ± ∞ of 
rational functions. 
 

1. aa aaa aaaaaa aa aaa aaaaaaaaa aa aaaa         aaaa aaa 

aaaaaa aa aaa aaaaaaaaaaaa aaaa aaa     aaa  aaaaaaaa 

aaaa aa a                                                              . 

2. aa aaa aaaaaa aa aaa aaaaaaaaa aa aaaaa aa          aaa 

aaaaaa aa aaa aaaaaaaaaaaa aaaa aaa aaaaa aa     aaa 

aaaaaaaa aaaaaaaa aa aaa aaaaa aa aaa aaaa         aaa 

aaaaaaaaa                                                    aaa    . 

3. aa aaa aaaaaa aa aaa aaaaaaaaa aa aaaaaa  a aaaa aaa 

aaaaaa aa aaa aaaaaaaaaaaa aaaa aaa aaa     aa aa aaa 

aaaaaaaa aaaaaaaa aaaa aaaaaaaa                               . 

 

Example 2: Find the limit:  
3

2 3

1lim
1 13 2 5x

x
x x x→∞

−
− + −

 

 aaa aaaaa aa aaaaa 
 
 
 
 
 
 
 
III.  Infinite Limits at Infinity  (Page 204) 
 
Many function do not approach a finite limit as x increases (or 

decreases) without bound.          aaaaaaaaaa aaaaaaaaa             are 

one type of function that does not have a finite limit at infinity. 

What you should learn 
How to determine infinite 
limits at infinity 
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Let f be a function defined on the interval (a, ∞). The definition 

of infinite limits at infinity states that 

 

1. lim ( )
x

f x
→∞

= ∞  means                                     aaaa aaa 

aaaa aaaaaaaa aaaaaa aa aaaaa aa a aaaaaaa   aaaaaa 

aaaaaa a a a aaaa aaaa aaaa a a  aaaaa a a                 . 

2. lim ( )
x

f x
→∞

= −∞  means                                         aaaa 

aaa aaaa aaaaaaaa aaaaaa aa a                        aaaa aa 

aaaaaaaaaaaaa aaaaaa a a a aaa         a aaaa aaaa a a  

aaaaaaa                                     a a a a     . 

 
 
Example 3: Find the limit:  2lim(2 9 1)

x
x x

→∞
− + . 

 aaa aaaaa aa aa 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 3.6 A Summary of Curve Sketching 
 
Objective: In this lesson you learned how to graph a function using 

the techniques from Chapters P−3. 
 
 
I.  Analyzing the Graph of a Function  (Pages 209−214) 
 
List some of the concepts that you have studied thus far that are 
useful in analyzing the graph of a function. 
 
aaaaaaaaaaaa aaa aaaaaaaaaaaaa aaaaaaaaa aaaaaa aaa aaaaaa 
aaaaaaaaaaa aaaaaaaaaaaaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaaaa 
aaaaaa aa aaaaaaaaaaa aaaaaaaa aaaaaaaaaaa aaaaaaaaaa 
aaaaaaaaaaa aaa aaaaaaaa aaaaaa aa aaaaaaaaa 
 
 
 
 
List three guidelines for analyzing the graph of a function. 
 
1.   aaaaaaaaa aaa aaaaaa aaa aaaaa aa aaa aaaaaaaaa 
 
2.   aaaaaaaaa aaa aaaaaaaaaaa aaaaaaaaaaa aaa aaaaaaaa aa aaa 
aaaaaa 
 
 
3.   aaaaaa aaa aaaaaaaa aaaaa a aaaa aaa a aaaaa aaa aaaa aa aa 
aaa aaaaaa aaa aaa aaaaaaa aa aaaaaaaaa aaaaaaaa aaaaaaa aaa 
aaaaaa aa aaaaaaaaaaa 
 
 
 
The graph of a rational function (having no common factors and 

whose denominator is of degree 1 or greater) has a                aaaa 

aaaaaaaaa                     if the degree of the numerator exceeds the 

degree of the denominator by exactly 1. 

 
To find the slant asymptote,                          aaa aaaa aaaaaaaa aa 

aaaaaaa aaa aaaaaaaa aaaaaaaa aa aaa aaa aa a         aaaaaaaaaaaa 

aaaaaaaaaa aaa aaaaaaaaaaaaa                                                       . 

 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to analyze the graph 
of a function 
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In general, a polynomial function of degree n can have at most 

                a a a                 relative extrema, and at most  

                a a a                 points of inflection. Moreover, 

polynomial functions of even degree must have             aa aaaaa 

aaa                         relative extremum. 
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Section 3.7 Optimization Problems 
 
Objective: In this lesson you learned how to solve optimization 

problems. 
 
 
I.  Applied Minimum and Maximum Problems 
     (Pages 218−222) 
 
What does “optimization problem” mean? 
 
aaa aaaaaaa aa aaaaaaaaaaa aaaaaaa aa aaaaaaa aaaaaaa  
 
 
In an optimization problem, the primary equation is one that  

            aaaaa a aaaaaaa aaa aaa aaaaaa aa aa aaaaaaaaa               . 

 
The feasible domain of a function consists of       aaa aaaaaa aa a 

aaaa aaaa aaaaa aa aaa aaaaaaa aa aaa aaaaaaa                          . 

 
A secondary equation is used to                  aaaaaaa aaa aaaaaaa 

aaaaaaaa aa a aaaaaaaa aa aaa aaaaaaaa                                    . 

 
List the steps for solving optimization problems. 
 
1.   aaaaaaaa aaa aaaaa aaaaaaaaaa aaa aaa aaaaaaaaaa aa aa 
aaaaaaaaaaa aa aaaaaaaaa aaaa a aaaaaaa 
 
2.   aaaaa a aaaaaaa aaaaaaaa aaa aaa aaaaaaaa aaaa aa aa aa 
aaaaaaaaa aa aaaaaaaaaa 
 
3.   aaaaaa aaa aaaaaaa aaaaaaaa aa aaa aaaaaa a aaaaaa 
aaaaaaaaaaa aaaaaaaaa aaaa aaa aaaaaaa aaa aaa aa a aaaaaaaaa 
aaaaaaaa aaaaaaaa aaa aaaaaaaaaaa aaaaaaaaa aa aaa aaaaaaa 
aaaaaaaaa 
 
4.   aaaaaaaaa aaa aaaaaaaa aaaaaa aa aaa aaaaaaa aaaaaaaaa aaaa 
aaa aaaaaaaaa aaa aaaaaa aaa aaaaa aaa aaaaaa aaaaaaa aaaaa 
aaaaaa 
 
5.   aaaaaaaaa aaa aaaaaaa aaaaaaa aa aaaaaaa aaaaa aa aaa 
aaaaaaaa aaaaaaaaaa aaaaaaaaa aa aaaaaaaa aaa aaaaaaa aaaa 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to solve applied 
minimum and maximum 
problems 
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Additional notes 
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Section 3.8 Newton’s Method 
 
Objective: In this lesson you learned how to use Newton’s Method, 

an approximation technique, to solve problems. 
 
 
I.  Newton’s Method   (Pages 229−232) 
 
Newton’s Method is                                          a aaaaaaaaa aaa 

aaaaaaaaaaaaa aaa aaaa aaaaa aa a aaaaaaaa                         , and 

it uses      aaaaaaa aaaaa aa aaaaaaaaaaa aaa aaaa aa aaa aaaaaaaa                   

aaaa aaa aaaaaaaaaaaa                                   . 

 
Let ( ) 0f c = , where f is differentiable on an open interval 
containing c. To use Newton’s Method to approximate c, use the 
following steps. 
 
1.   aaaa aa aaaaaaa aaaaaaaaaaaaa aa aaaa aa aaaaa aa aa aa 
aaaaa aa aaaaaaaaa 
 
 
2.   aaaaaaaaa a aaa aaaaaaaaaaaaa aaaaa aaa aaaaaaa  
aaaa a aa a aaaaaaa aaaaaa  
 
 
3.   aa a aa a aaaa a aa aaaaaa aaa aaaaaaa aaaaaaaaa aaa aaaa aaaaa 
aa aaa aaaaa aaaaaaaaaaaaaa aaaaaaaaaa aaaaaa aa aaaa a aaa 
aaaaaaaaa a aaa aaaaaaaaaaaaaa 
 
 
Each successive application of this procedure is called an 

              aaaaaaaaa                    . 

 
When the approximations given by Newton’s Method approach a 

limit, the sequence 1 2 3, , , , ,nx x x xK K  is said to 

                     aaaaaaaa                    . Moreover, if the limit is c, it 

can be shown that c must be                        a aaa aa a                  . 

 

Newton’s Method does not always yield a convergent sequence. 

One way it can fail to do so is if         a aaaaa a a aaa aaaa a           

or if                    aaa  aa  aaaa aaa aaaaa               . 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to approximate a 
zero of a function using 
Newton’s Method 
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When the first situation is encountered, it can usually be 

overcome by          aaaaaaaa a aaaaaaaaa aaa aaa aa                  . 

 
 
 
Additional notes 
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Section 3.9 Differentials 
 
Objective: In this lesson you learned how to use approximation 

techniques to solve problems. 
 
 
 
 
 
 
 
 
 
 
 
I.  Tangent Line Approximations   (Page 235) 
 
Consider a function f that is differentiable at c. The equation for 

the tangent line at the point (c, f(c)) is given by  

                       a a aaaa a a aaaaaa a aa                            , and is 

called                                    aaa aaaaaaa aaaa aaaaaa aaa aaaaaa 

aaaaaaaaaaaaaa aa a aa a                               . Because c is a 

constant, y is a             aaaaaa aaaaaaaa            of x. Moreover, by 

restricting the values of x to be sufficiently close to c, the values 

of y can be used as approximations (to any desired accuracy) of  

             aaa aaaaaa aa aaa aaaaaaaa a                  . In other words, 

as x → c, the limit of y is              aaaa                . 

 
 
II.  Differentials   (Page 236) 
 
When the tangent line to the graph of f at the point (c, f(c)) is 

used as an approximation of the graph of f, the quantity x − c is 

called the                  aaaaaa aa a                 and is denoted by 

            aa             . When Δx is small, the change in y (denoted 

by Δy) can be approximated as            aa a a aaaa aa               . 

For such an approximation, the quantity Δx is traditionally 

denoted by          aa            and is called the differential of x. 

The expression ( )f x dx′  is denoted by           aa             , and is 

called the differential of y. 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
concept of a tangent line 
approximation 

What you should learn 
How to compare the 
value of the differential, 
dy, with the actual 
change in y, Δy 

Important Vocabulary  Define each term or concept. 
 
Differential of x  aaa a a aaaa aaaaaaaaa a aaaaaaaa aaaa aa aaaaaaaaaaaaaa aa aa 
aaaa aaaaaaaa aaaaaaaaaa aa aaa aaaaaaaaaaaa aa a aaaaaaaa aa aaa aa aaa aaaaaaa 
aaaa aaaaaaa 
 
Differential of y  aaa a a aaaa aaaaaaaaa a aaaaaaaa aaaa aa aaaaaaaaaaaaaa aa aa aaaa 
aaaaaaaa aaaaaaaaaa aa aaa aaaaaaaaaaaa aa a aaaaaaaa aa aaa aa aa a a aaaa aaa 
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In many types of applications, the differential of y can be used as 

                 aa aaaaaaaaaaaaa aa aaa aaaaaa aa a                    . That 

is, Δy ≈           aa           or Δy ≈           a aaaa aa            . 

 
III.  Error Propagation   (Page 237) 
 
Physicists and engineers tend to make liberal use of the 

approximation of Δy by dy. One way this occurs in practice is in 

the                        aaaaaaaaaa aa aaaaaa aaaaaaaaaa aa aaaaaaaa 

aaaaaaaaa aaaaaaa                    . For example, if you let x 

represent the measured value of a variable and let x + Δx 

represent the exact value, then Δx is                          aaa aaaaa aa 

aaaaaaaaaaa                     . Finally if the measured value x is used 

to compute another value f(x), the difference between f(x + Δx) 

and f(x) is the     aaaaaaaaaa aaaaa                                             . 

 
IV.  Calculating Differentials   (Pages 238−239) 
 
Each of the differentiation rules that you studied in Chapter 2 

can be written in                 aaaaaaaaaaaa aaaa                  . 

 
Suppose u and v are differentiable functions of x. Then by the 

definition of differentials, you have  

du =             aaaaaaa aa                      and dv =             aaaaaaa aa                      a 

 
Complete the following differential forms of common 
differentiation rules: 
 
Constant Multiple Rule:          aaaaa a a aa               a 
 
Sum or Difference Rule:       aaa a aa a aa a aa         a 
 
Product Rule:               aaaaa a a aa a a aa             a 
 
Quotient Rule:        aaaaaa a aa aa a a aaa a aa          a 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to estimate a 
propagated error using a 
differential 

What you should learn 
How to find the 
differential of a function 
using differentiation 
formulas 
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Chapter 4 Integration 
 
Section 4.1 Antiderivatives and Indefinite Integration 
 
Objective: In this lesson you learned how to evaluate indefinite 

integrals using basic integration rules. 
 
 
 
 
 
 
 
 
I.  Antiderivatives  (Pages 248−249) 
 
If F is an antiderivative of f on an interval I, then G is an 

antiderivative of f on the interval I if and only if G is of the form  

       aaaa a aaaa a a             , for all x in I where C is a constant. 

The entire family of antiderivatives of a function can be 

represented by                              aaaaaa a aaaaaaaa a aa a aaaaa 

aaaaaaaaaaaaaa                                      . The constant C is called 

the            aaaaaaaa aa aaaaaaaaa           . The family of functions 

represented by G is the         aaaaaaa aaaaaaaaaaa aa a                . 

 
A differential equation in x and y is an equation that     aaaaaaa 

aa aa aaa aaaaaaa aa a                                                                . 

 
Give an example of a differential equation and its general 
solution. 
 
aaaaaaaaaaaa aaaaaaaaa  aaaaa a aaaaaaaaaaa aaaaaaaaa  aaaa a 
aa a aa 
 
II.  Notation for Antiderivatives  (Page 249) 
 
The operation of finding all solutions of the equation 

( )dy f x dx=  is called              aaaaaaaaaaaaaaaaaaa aa 

aaaaaaaaaa aaaaaaaaaaa                      and is denoted by the 

symbol ∫ , which is called an              aaaaaaaa aaaa             . 

The symbol ( )f x dx∫  is the          aaaaaa aaaaaaaa aa aaaa        . 

Course Number 
 
Instructor 
 
Date 
 

Important Vocabulary  Define each term or concept. 
 
Antiderivative  a aaaaaaaa a aa aa aaaaaaaaaaaaaa aa a aaaaaaaa a aa aa aaaaaaaa a aa 
aa aaaa a aaaa aaa aaa a aa aa  
 

What you should learn 
How to write the general 
solution of a differential 
equation 

What you should learn 
How to use indefinite 
integral notation for 
antiderivatives 
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Use the terms antiderivative, constant of integration, differential, 
integral sign, and integrand to label the following notation: 
    aaaaaaaaaaaa 
aaaaaaaa aaaa    aaaaaaaa aa aaaaaaaaaaa 

 ( ) ( )f x dx F x C= +∫  

 
                    aaaaaaaaa    aaaaaaaaaaaaaa 
 

The differential in the indefinite integral identifies                  aaa 

aaaaaaaa aa aaaaaaaaaaa                        . 

 

The notation ( ) ( )f x dx F x C= +∫ , where C is an arbitrary 

constant, means that F is            aa aaaaaaaaaaaaaa aa a a aaa aaa       

a aaaa a aaaa aaa aaa a aa aaa aa aa a                                . 

 
 
III.  Basic Integration Rules  (Pages 250−252) 
 
Complete the following basic integration rules, which follow 
from differentiation formulas. 
 

1.   k dx =∫             aa a aa  aaaaa a aa a aaaaaaaa          . 

 

2.   ( )kf x dx =∫                       a a aaaa aa                  a 

 

3.   [ ]( ) ( )f x g x dx+ =∫             a aaaa aa a a aaaa aa              a 

 

4.   [ ]( ) ( )f x g x dx− =∫             a aaaa aa a a aaaa aa              a 

 

5.                a aa aa                        = 
1

, 1
1

nx C n
n

+

+ ≠ −
+

 

 

6.   0 dx =∫                       a                  a 

 

7.   cos x dx =∫                      aaa a a a                 a 

 
 

What you should learn 
How to use basic 
integration rules to find 
antiderivatives 
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8.   sin x dx =∫                     a aaa a a a                 a 

 

9.   2sec x dx =∫                      aaa a a a                 a 

 

10.   sec tanx x dx =∫                      aaa a a a                 a 

 

11.   2csc x dx =∫                     a aaa a a a                 a 

 

12.   csc cotx x dx =∫                     a aaa a a a                 a 

 

Example 1: Find 3 dx−∫ . 

 aaa a a 
 
 

Example 2: Find 22x dx∫ . 

 aaaaa aa a a 
 
 

Example 3: Find (1 2 )x dx−∫ . 

 a a aa a a 
 
 
 
IV.  Initial Conditions and Particular Solutions   
        (Pages 253−255) 
 

The equation ( )y f x dx= ∫  has many solution, each differing 

from the others           aa a aaaaaaaa           . This means that the 

graphs of any two antiderivatives of f are                    aaaaaaaa 

aaaaaaaaaaaa aa aaaa aaaaa                   . 

 
In many applications, you are given enough information to 

determine a              aaaaaaaaaa aaaaaaaa                 . To do this, 

you need only know the value of y = F(x) for one value of x, 

called an             aaaaaaa aaaaaaaaa               . 

 

What you should learn 
How to find a particular 
solution of a differential 
equation 
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Example 4: Solve the differential equation 0.2 40dC x
dx

= − + , 

where C(180) = 89.90. 
 aaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 4.2 Area 
 
Objective: In this lesson you learned how to evaluate a sum and 

approximate the area of a plane region. 
 
 
I.  Sigma Notation  (Pages 259−260) 
 
The sum of n terms 1 2 3, , , , na a a aK  is written as 

1 2 3
1

n

i n
i

a a a a a
=

= + + + +∑ L , where i is the                 aaaaa aa 

aaaaaaaaa                 , ia  is the           aaa aaaa aa aaa aaa           , 

and n and 1 are the                             aaaaa aaa aaaaa aaaaaa aa 

aaaaaaaaa                    . 

 
Complete the following properties of summation which are 
derived using the associative and commutative properties of 
addition and the distributive property of addition over 
multiplication. 
 

1

n

i
i

ka
=

=∑                    a aaa                          

 

1

( )
n

i i
i

a b
=

± =∑                  aaa aaa      

 
Now complete the following summation formulas. 
 

1.  
1

n

i

c
=

=∑                   aa                      

 

2.  
1

n

i

i
=

=∑    

 

3.  2

1

n

i

i
=

=∑    

 

4.  3

1

n

i

i
=

=∑    

 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use sigma 
notation to write and 
evaluate a sum 

     aaa a aaa 

       aa 

aaa a aaaaa a aaa 

          aa 

     aaaa a aaaa 

          aa 
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II.  Area  (Page 261) 
 
In your own words, explain the exhaustion method that the 
ancient Greeks used to determine formulas for the areas of 
general regions. 
 
aaa aaaaaaaa aaaaaaaaaaa aa aaaa aaaaaa aaa aaaaa aa 
aaaaaaaaaaa aaaaaaaaaaaa aaa aaaaaa aa a aaaaaaaa aaaaaaa aa 
aaaaa aaa aaaa aa aaaaaaaa aaaaaaa aaa aaaaaaaaaaaa aaaaaaaaa 
aa aaa aaaaaa aaa aaa aaaaaaaaaaaaa aaaaa aaa aaaaaaa aaa 
aaaaaaaaa aaa aaaa aa a aaaaaaaa aaaaaa aa aaaaaaaaaaaa aa aa 
aaaaaaa aaaaaaaaa aaaaaaa aaa aa aaaaaaa aaaaaaaaaaaaa 
aaaaaaaa aaa aaaa aaaaa aa a aaa aaaa aa aaa aaaaaaaaa aaaaaaa 
aa aaaa aaaa aaa aaaa aa aaa aaaaaaa aaa aaa aaaa aa aaa 
aaaaaaaaaaaaa aaaaaaa aa aaaaaaa aaaa aaa aaaa aa aaa aaaaaaa 
aaaaaaaaa aa a aaaaaaaaaa aaa aaaaa aa aaaa aaaaaaaa aaaaaa 
aaaaaa aaa aaaaaa aaaaaaaaaaaaaa aa aaa aaaa aa aaa aaaaaaaa 
 
 
 
III.  Area of a Plane Region  (Page 262) 
 
Describe how to approximate the area of a plane region. 
 
aaaaaa aaa aaaaaa aaaa a aaaaaa aa aaaaaaaaaa aaaa aaaaaa aaa 
aaaa aaaaaa aaa aaaaaa aa aaaa aaaaaaa aaa aaaaaaa aaaa aaa aaa 
aaaaa aa aaaaa aaaaaaaaaa aa aaaaaaaaaaa aaa aaaa aa aaa 
aaaaaaa aa aaaaaaaaaa aaa aaaaaa aa aaaaaaaaaaa aaa aaa aaaaaa 
aaaaaa aaa aaaaaa aaaaaaaaaaaaaa aa aaa aaaa aa aaa aaaaaaaa 
 
 
 
IV.  Upper and Lower Sums  (Pages 263−267) 
 
Consider a plane region bounded above by the graph of a 

nonnegative, continuous function ( )y f x= . The region is 

bounded below by the            aaaaaa          , and the left and right 

boundaries of the region are the vertical lines x a=  and x b= . 

To approximate the area of the region, begin by         aaaaaaaaaa 

aaa aaaaaaaa aaa aa aaaa a aaaaaaaa                      , each of width  

              aa a aa a aaaa                . Because f is continuous, the 

Extreme Value Theorem guarantees the existence of a  

                       aaaaaaa aaa a aaaaaaa aaaaa aa aaaa              in 

each subinterval. The value ( )if m  is             aaa aaaaaaa aaaaa  

What you should learn 
How to understand the 
concept of area 

What you should learn 
How to approximate the 
area of a plane region 

What you should learn 
How to find the area of a 
plane region using limits 
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aa aaaa aa aaa aaa aaaaaaa                      and the value of ( )if M  

is             aaa aaaaaa aaaaa aa aaaa aa aaa aaa aaaaaaaaaaa         . 

 
An inscribed rectangle         aaaa aaaaaa          the ith subregion 

and a circumscribed rectangle            aaaaaa aaaaaaa            the 

ith subregion. The height of the ith inscribed rectangle is  

          aaaaa           and the height of the ith circumscribed 

rectangle is            aaaaa            . For each i, the area of the 

inscribed rectangle is             aaaa aaaa aa aaaaa aa           the area 

of the circumscribed rectangle. The sum of the areas of the 

inscribed rectangles is called            a aaaaa aaa          , and the 

sum of the areas of the circumscribed rectangles is called  

             aa aaaaa aaa                 . 

 

                  aaaaa aaa             = 
1

( ) ( )
n

i
i

s n f m x
=

= Δ∑  

 

                  aaaaa aaa             = 
1

( ) ( )
n

i
i

S n f M x
=

= Δ∑  

 
The actual area of the region lies between               aaa aaaaa aaa 

aaaa aaa aaa aaaaaa aaa aaaa                       . 

 
 
Let f be continuous and nonnegative on the interval [a, b]. The 

limits as n → ∞ of both the lower and upper sums exist and are  

           aaaaa aa aaaa aaaaa            . That is,  

1

1

lim ( ) lim ( )

lim ( )

lim ( )

n

in n
i
n

in
i

n

s n f m x

f M x

S n

→∞ →∞
=

→∞
=

→∞

= Δ

= Δ

=

∑

∑  

where ( ) /x b a nΔ = −  and ( )if m  and ( )if M  are the minimum 
and maximum values of f on the subinterval. 
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Definition of the Area of a Region in the Plane 
 
Let f be continuous and nonnegative on the interval [a, b]. The 

area of the region bounded by the graph of f, the x-axis, and the 

vertical lines x = a and x = b is 

               Area = 
1

lim
n

n
i

→∞
=
∑           aaaaa aa              ,   1i i ix c x− ≤ ≤  

where ( ) /x b a nΔ = − . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 
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Section 4.3 Riemann Sums and Definite Integrals 
 
Objective: In this lesson you learned how to evaluate a definite 

integral using a limit. 
 
 
 
 
I.  Riemann Sums  (Pages 271−272) 
 
Let f be defined on the closed interval [a, b], and let Δ be a 

partition of [a, b] given by 0 1 2 1n na x x x x x b−= < < < < < =L , 

where ixΔ  is the width of the ith subinterval. If ic  is any point in 

the ith subinterval 1[ , ]i ix x− , then the sum 
1

( )
n

i i
i

f c x
=

Δ∑ , 

1i i ix c x− ≤ ≤ , is called a                    aaaaaaa aaa             of f for 

the partition Δ. 

 
 
The width of the largest subinterval of a partition Δ is the 

             aaaa             of the partition and is denoted by  

           aa a aa               . If every subinterval is of equal width, 

the partition is              aaaaaaa              and the norm is denoted 

by b ax
n
−Δ = Δ = . For a general partition, the norm is related 

to the number of subintervals of [a, b] in the following way:  

            aa a aa a aaaaa a a                     . So the number of 

subintervals in a partition approaches infinity as             aaa aaaa 

aa aaa aaaaaaaaa aaaaaaaaaa a                                   . 

 
 
 
 
 
 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
definition of a Riemann 
sum 
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II.  Definite Integrals  (Pages 273−275) 
 
If f is defined on the closed interval [a, b] and the limit of 

Riemann sums over partitions Δ 

 
0

1

lim ( )
n

i i
i

f c x
Δ→

=

Δ∑  

exists, then f is said to be            aaaaaaaaa aa aaa aa              and 

the limit is denoted by 
0

1

lim ( ) ( )
n b

i i
ai

f c x f x dx
Δ→

=

Δ =∑ ∫ . This limit 

is called the            aaaaaaaa aaaaaaaa aa aaaa a aa a            . The 

number a is             aaa aaaaa aaaaa aa aaaaaaaaaaa            , and 

the number b is                  aaa aaaaa aaaaa aa aaaaaaa                 . 

 
 
It is important to see that, although the notation is similar, 

definite integrals and indefinite integrals are different concepts:  

a definite integrals is              a aaaaaa                   , where an 

indefinite integral is                a aaaaaa aa aaaaaaaaa                . 

 
 
If a function f is continuous on the closed interval [a, b], then f is  

             aaaaaaaaaa               on [a, b]. 

 
 

Example 1: Evaluate the definite integral 
3

1
(2 )x dx

−
−∫ . 

a 
 
 
 
 
 
If f is continuous and nonnegative on the closed interval [a, b], 
then the area of the region bounded by the graph of f, the x-axis, 
and the vertical lines x = a and x = b is given by 
 

Area = ∫ aaaa aa 

 
 
 

What you should learn 
How to evaluate a 
definite integral using 
limits 

aa 

aa 
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III.  Properties of Definite Integrals  (Pages 276−278) 
 

If f is defined at x = a, then we define ( )
a

a
f x dx =∫          a         . 

 
 

If f is integrable on [a, b], then we define ( )
a

b
f x dx =∫        a aaaaa aa          . 

 
 
If f is integrable on the three closed intervals determined by a, b, and c, then 
 

( )
b

a
f x dx =∫         aaaaa aa   a   aaaaa aa                 . 

 
 
If f and g are integrable on [a, b] and k is a constant, then the function kf is 

integrable on [a, b] and  ( )
b

a
kf x dx =∫        a a aaaa aa          . 

 
 
If f and g are integrable on [a, b] and k is a constant, then the function f ± g is 

integrable on [a, b] and  [ ( ) ( )]
b

a
f x g x dx± =∫         a aaaa aa a a aaaa aa         . 

 
 
If f and g are continuous on the closed interval [a, b] and 

0 ( ) ( )f x g x≤ ≤  for a x b≤ ≤ , the area of the region bounded by 

the graph of f and the x-axis (between a and b) must be 

                aaaaaaaaaaa             . In addition, this area must be 

                  aaaa aaaa aa aaaaa aa                    the area of the 

region bounded by the graph of g and the x-axis between a and b. 

 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to evaluate a 
definite integral using 
properties of definite 
integrals 

aa 

aa 

a
a

aa 

aa 

aa 

aa 

aa 

aa 

aa 

aa 

aa 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 
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Section 4.4 The Fundamental Theorem of Calculus 
 
Objective: In this lesson you learned how to evaluate a definite 

integral using the Fundamental Theorem of Calculus. 
 
 
I.  The Fundamental Theorem of Calculus  (Pages 282−284) 
 
Informally, the Fundamental Theorem of Calculus states that  

                             aaaaaaaaaaaaaaa aaa aaaaaaaa aaaaaaaaaaa aaa 

aaaaaaa aaaaaaaaaaa aa aaa aa aaaa aaaaaaaa aaa aaaaaaaaaaaaaa 

aaa aaaaaaa aaaaaaaa                                                                     . 

 
The Fundamental Theorem of Calculus states that if f is 

continuous on the closed interval [a, b] and F is an antiderivative 

of f on the interval [a, b], then ( )
b

a
f x dx =∫           aaaa a aaaa    . 

 
Guidelines for Using the Fundamental Theorem of Calculus 
 
1. Provided you can find an antiderivative of f, you now have 

a way to evaluate a definite integral without               aaaaaa 

aa aaa aaa aaaaa aa a aaa                       . 

 
2. When applying the Fundamental Theorem, the following notation is 

convenient.   ]( ) ( )
bb

a a

f x dx F x= =∫           aaaa a aaaa              . 

 
3. When using the Fundamental Theorem of Calculus, it is not 

necessary to include a        aaaaaaaa aa aaaaaaaaaa a            . 

 

Example 1: Find 
2

2

2
(4 )x dx

−
−∫ . 

aaaa 
 
 
 
 
Example 2: Find the area of the region bounded by the x-axis 

and the graph of ( ) 2 xf x e= +  for 0 6x≤ ≤ . 
aaaaaaa aaaaaa aaaaaa aaaaa 

 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to evaluate a 
definite integral using the 
Fundamental Theorem of 
Calculus 
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II.  The Mean Value Theorem for Integrals  (Page 285) 
 
The Mean Value Theorem for Integrals states that if f is 

continuous on the closed interval [a, b], then there exists a 

number c in the closed interval [a, b] such that ( )
b

a
f x dx =∫  

                    aaaa aa a aa                    . 

 
The Mean Value Theorem for Integrals does not specify how to 

determine c. It merely guarantees                   aaa aaaaaaaaa aa aa 

aaaaa aaa aaaaaa a aa aaa aaaaaaaa                              . 

 
 
III.  Average Value of a Function  (Pages 286−287) 
 
If f is integrable on the closed interval [a, b], then the average 

value of f on the interval is 

 

Average value of f on [a, b] = ∫ aaaa aa 

 
 
Example 3: Find the average value of 2( ) 0.24 4f x x= +  on          

[0, 10]. 
aa 

 
 
 
 
IV.  The Second Fundamental Theorem of Calculus 
        (Pages 288−290) 
 
The Second Fundamental Theorem of Calculus states that if f is 

continuous on an open interval I containing a, then, for every x 

in the interval, ( )
x

a

d f t dt
dx

⎡ ⎤
⎢ ⎥⎣ ⎦∫  =                aaaa               . 

 
 
 
 
 
 
 

What you should learn 
How to understand and 
use the Mean Value 
Theorem for Integrals 

What you should learn 
How to find the average 
value of a function over a 
closed interval 

What you should learn 
How to understand and 
use the Second 
Fundamental Theorem of 
Calculus 

a

a a aa 

aa 
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V.  Net Change Theorem  (Pages 291−292) 
 
The Net Change Theorem states that the definite integral of the 
rate of change of a quantity '( )F x  gives the total change, or net 
change, in that quantity of the interval [a, b]. 

 '( )
b

a
F x dx =∫            aaaa a aaaa                a 

 
Example 4: Liquid flows out of a tank at a rate of 40 2t−  

gallons per minute, where 0 20t≤ ≤ . Find the 
volume of liquid that flows out of the tank during 
the first 5 minutes. 
aaa aaaaaaa 

 
 
 
 
 
 
 
 
Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to understand and 
use the Net Change 
Theorem 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 
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Section 4.5 Integration by Substitution 
 
Objective: In this lesson you learned how to evaluate different types 

of definite and indefinite integrals using a variety of 
methods. 

 
 
I.  Pattern Recognition  (Pages 297−299) 
 
The role of substitution in integration is comparable to the role 

of                    aaa aaaaa aaaa                  in differentiation. 

 
Antidifferentiation of a Composite Function 
 
Let g be a function whose range is an interval I, and let f be a 

function that is continuous on I. If g is differentiable on its 

domain and F is an antiderivative of f on I, then 

( ( )) ( )f g x g x dx′∫  =                 aaaaaaa a a              . Letting 

( )u g x=  gives ( )du g x dx′=  and ( )f u du∫ =        aaaa a a      . 

 

Example 1: Find 2 3(2 3 ) ( 6 )x x dx− −∫ . 

aaaaa a aaaaa a a 
 
 
 
 
 
 
Many integrands contain the variable part of ( )g x′  but are 

missing a constant multiple. In such cases, you can         aaaaaaa 

aaa aaaaaa aa aaa aaaaaaaaa aaaaaaaa aaaaaaa                              . 

 

Example 2: Find 2 3 26 (4 1)x x dx−∫ . 

aaaa a aaa a a a a 
 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use pattern 
recognition to find an 
indefinite integral 
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II.  Change of Variables  (Pages 300−301) 
 
With a formal change of variables, you completely          aaaaaa 

aaa aaaaaaaa aa aaaaa aa a aaa aaa aa aaa aaaaa              aaaaaaaa 

aaaaaaaa                                   . The change of variable technique 

uses the          aaaaaaa        notation for the differential. That is, if 

( )u g x= , then du =           aaaa aa                      , and the integral  

takes the form ( ( )) ( )f g x g x dx′ =∫ ∫             aaaa aa a aaaa a a            . 

 

Example 3: Find 2 3 26 (4 1)x x dx−∫  using change of variables. 

aaaa a aaa a a a a 
 
 
 
 
 
Complete the list of guidelines for making a change of variables. 
 
1.   aaaaaa a aaaaaaaaaaaa a a aaaaa aaaaaaaa aa aa aaaa aa 
aaaaaa aaa aaaaa aaaa aa a aaaaaaaaa aaaaaaaaa aaaa aa a 
aaaaaaaa aaaaaa aa a aaaaaa 
 
2.   aaaaaaa aa a aaaaa aaa 
 
3.   aaaaaaa aaa aaaaaaaa aa aaaaa aa aaa aaaaaaaa aa 
 
4.   aaaa aaa aaaaaaaaa aaaaaaaa aa aaaaa aa aa 
 
5.   aaaaaaa a aa aaaa aa aaaaaa aa aaaaaaaaaaaaaa aa aaaaa aa 
aa 
 
6.   aaaaa aaaa aaaaaa aa aaaaaaaaaaaaaaaa 
 
 
III.  The General Power Rule for Integration  (Page 302) 
 
One of the most common u-substitutions involves           aaaaaaaaa 

aa aaa aaaaaaaaa aaaa aaa aaaaa aa a aaaaa                                     , 

and is given a special name—the                   aaaaaaa aaaaa aaaa 

aaa aaaaaaaaaaa                     . It states that if g is a differentiable  

function of x, then ∫         aaaaaaa aaaaa aa a aaaaaaaaa a aa a aa a aa a a a a                . 

What you should learn 
How to use a change of 
variables to find an 
indefinite integral 

What you should learn 
How to use the General 
Power Rule for 
Integration to find an 
indefinite integral 
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Equivalently, if ( )u g x= , then ∫    aa aa a aaaaaaaaa a aa a aa a a aa 

 

Example 4: Find 3 2 2(4 )(12 2 )x x x x dx− −∫ . 

aaaa a aaaaaa a a 
 
 
 
 
 
 
 
 
IV.  Change of Variables for Definite Integrals   
        (Pages 303−304) 
 
When using u-substitution with a definite integral, it is often 

convenient to                     aaaaaaaaa aaa aaaaaa aa aaaaaaaaaaa 

aaa aaa aaa a                   rather than to convert the antiderivative 

back to the variable x and evaluate the original limits. 

 
Change of Variables for Definite Integrals 
 
If the function ( )u g x=  has a continuous derivative on the 

closed interval [a, b] and f is continuous on the range of g, then 

( ( )) ( )
b

a
f g x g x dx′ =∫ ∫            aaaa aa               . 

 

Example 5: Find 
4

2 2

0
2 (2 3)x x dx−∫ . 

aaaaaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to use a change of 
variables to evaluate a 
definite integral 

aaaa
a

aaaa
a
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V.  Integration of Even and Odd Functions  (Page 305) 
 
Occasionally, you can simplify the evaluation of a definite 

integral over an interval that is symmetric about the y-axis or 

about the origin by               aaaaaaaaaaa aaa aaaaaaaaa aa aa aa 

aaaa aa aaa aaaaaaaa                                 . 

 
Let f be integrable on the closed interval [− a, a]. 
 

If f is an           aaaa                function, then 
0

( ) 2 ( )
a a

a
f x dx f x dx

−
=∫ ∫ . 

If f is an           aaa                  function, then ( ) 0
a

a
f x dx

−
=∫ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 

What you should learn 
How to evaluate a 
definite integral 
involving an even or odd 
function 
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Section 4.6 Numerical Integration 
 
Objective: In this lesson you learned how to approximate a definite 

integral using the Trapezoidal Rule and Simpson’s Rule. 
 
 
I.  The Trapezoidal Rule  (Pages 311−313) 
 
In your own words, describe how the Trapezoidal Rule 
approximates the area under the graph of a continuous function f. 
 
aaaaaaa aaaa aaaaa  
 
 
 
 
 
The Trapezoidal Rule states that if f is continuous on [a, b], then 

( )
b

a
f x dx ≈∫      aaa a aaaaaaaaaaaaaa a aaaaaa a a aa aaaaaaaa a aaaaaa        . 

Moreover, as n → ∞ , the right-hand side approaches ( )
b

a
f x dx∫ . 

 
The approximation of the area under a curve given by the 

Trapezoidal Rule tends to become        aaaa aaaaaaaa            as n 

increases. 

 
Example 1: Use the Trapezoidal Rule to approximate 

2

1 3
x dx

x−∫  using n = 4. Round your answer to 

three decimal places. 
 aaaaa 
 
 
 
 
 
 
 
II.  Simpson’s Rule  (Pages 313−314) 
 
In your own words, describe how Simpson’s Rule approximates 
the area under the graph of a continuous function f. 
 
aaaaaaa aaaa aaaaa  
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to approximate a 
definite integral using the 
Trapezoidal Rule 

What you should learn 
How to approximate a 
definite integral using 
Simpson’s Rule 
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For Simpson’s Rule, what restriction is there on the value of n? 
 
aaa aaaaaa aa aaaaaaaaaaaa a aaaa aa aaaaa  
 
 
Simpson’s Rule states that if f is continuous on [a, b] and n is even, then  

( )
b

a
f x dx ≈∫      aaa a aaaaaaaaaaaaaa a aaaaa a a aaaaaa a a a a a aaaaaaaa a aaaaaa        . 

Moreover, as n → ∞ , the right-hand side approaches ( )
b

a
f x dx∫ . 

 

Example 2: Use Simpson’s Rule to approximate 
2

1 3
x dx

x−∫  

using n = 4. Round your answer to three decimal 
places. 

 aaaaa 
 
 
 
 
 
 
 
 
III.  Error Analysis  (Page 315) 
 
For         aaaaaaaa        a        Rule, the error E in approximating 

( )
b

a
f x dx∫  is given as 

5
(4)

4

( ) max ( )
180
b aE f x

n
− ⎡ ⎤≤ ⎣ ⎦ , a x b≤ ≤ . 

 
For        aaa aaaaaaaaaaa        Rule, the error E in approximating 

( )
b

a
f x dx∫  is given as 

3

2

( ) max ( )
12
b aE f x

n
− ′′⎡ ⎤≤ ⎣ ⎦ , a x b≤ ≤ . 

 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 

What you should learn 
How to analyze errors in 
the Trapezoidal Rule and 
Simpson’s Rule 
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Chapter 5    Logarithmic, Exponential, and 
      Other Transcendental Functions 
 
Section 5.1 The Natural Logarithmic Function: Differentiation 
 
Objective: In this lesson you learned the properties of the natural 

logarithmic function and how to find the derivative of the 
natural logarithmic function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
I.  The Natural Logarithmic Function  (Pages 324−326) 
 
The domain of the natural logarithmic function is            aaa aaa 

aa aaa aaaaaaaa aaaa aaaaaaa                                         . 

 
The value of ln x is positive for             a a a           and negative 

for                 a a a a a                  . Moreover, ln (1) =       a        , 

because the upper and lower limits of integration are equal  

when             a a a                 . 

 
The natural logarithmic function has the following properties: 
 
1.  aaa aaaaaa aa aaa aa aaa aaa aaaaa aa aaaa aaa 
 
2.  aaa aaaaaaaa aa aaaaaaaaaaa aaaaaaaaaaa aaa aaaaaaaaaaa 
 
3.  aaa aaaaa aa aaaaaaa aaaaaaaaa 
 
If a and b are positive numbers and n is rational, then the 
following properties are true: 
 
1.  ln (1) =              a                  . 
 
2.  ln (ab) =            aa a a aa a                . 
 
3.  ln(an) =                     a aa a                 . 

Course Number 
 
Instructor 
 
Date 
 

Important Vocabulary  Define each term or concept. 
 
Natural logarithmic function  aaa aaaaaaa aaaaaaaaaaa aaaaaaaa aa aaaaaaa aa aa a a    
a                 aa                  a aaa aaa a a aaa                  a a 
 
 
e  aaa aaaaaa a aaaaaaa aaa aaaaaaaa aaaa aaaaaa aaaa aaaa               a                  aa      
aa a a   a aaa aa a aaa                  a a 
 
 

What you should learn 
How to develop and use 
properties of the natural 
logarithmic function 
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4.  ln a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 =           aa a a aa a                  . 

Example 1: Expand the logarithmic expression 
2

ln
4xy . 

 aa a a a aa a a aa a 
 
 
 
II.  The Number e  (Page 327) 
 
The base for the natural logarithm is defined using the fact 

that the natural logarithmic function is continuous, is one-to-one, 

and has a range of (−∞, ∞). So, there must a unique real number 

x such that              aa a a a             . This number is denoted by 

the letter              a                , which has the decimal 

approximation            aaaaaaaaaaaaa                       . 

 
 
III.  The Derivative of the Natural Logarithmic Function   
        (Pages 328−330) 
 
Let u be a differentiable function of x. Complete the following 

rules of differentiation for the natural logarithmic function: 

[ ]lnd x
dx

=                  aaa                   , x > 0 

[ ]lnd u
dx

=              aaa aaaaaaa a aaaa                    , u > 0 

Example 2: Find the derivative of 2( ) lnf x x x= . 
 a a aa aaa 

 
 
If u is a differentiable function of x such that 0u ≠ , then 

[ln ]d u
dx

=                 aaa                 . In other words, functions of  

the form lny u=  can be differentiated as if             aaa aaaaaaaa 

aaaaa aaaaa aaaa aaa aaaaaaa                          . 

 
Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to understand the 
definition of the number 
e 

What you should learn 
How to find derivatives 
of functions involving the 
natural logarithmic 
function 
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Section 5.2 The Natural Logarithmic Function:  Integration 
 
Objective: In this lesson you learned how to find the antiderivative 

of the natural logarithmic function. 
 
 
I.  Log Rule for Integration  (Pages 334−337) 
 
Let u be a differentiable function of x. 
 

1 dx
x

=∫            aaa a a a a            a 

 
1u dx du

u u
′

= =∫ ∫            aaa a a a a            a 

 

Example 1: Find 11 dx
x

⎛ ⎞−⎜ ⎟
⎝ ⎠∫ . 

a a aaa a a a a 
 
 
 
 
 

Example 2: Find 
2

33
x dx

x−∫ . 

a aaaaa aaaa a aaa a a 
 
 
 
 
 

Example 3: Find 
2 4 1x x dx

x
− +∫ . 

aaaaaaa a aa a aaa a a a a 
 
 
 
 
 
 
 
If a rational function has a numerator of degree greater than  

                          aa aaaaa aa aaaa aa aaa aaaaaaaaaa                      , 

division may reveal a form to which you can apply the Log Rule. 

 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use the Log Rule 
for Integration to 
integrate a rational 
function 
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Guidelines for Integration 
 
1.  aaaaa a aaaaa aaaa aa aaaaaaaaaaa aaaaaaaaa 
 
 
2.  aaaa aa aaaaaaaaaaa aaaaaaa aaaa aaaaaaaaa aaa aa aaaa aa 
aaa aaaaaaaaaa aaaa aa aaaaa aaa aaaaaa aaaa a aaaaaa aa a aaaa 
aaaa aaaa aaa aaaaaaaaa aaaaaaa aa aaa aaaaaaaa 
 
 
3.  aa aaa aaaaaa aaaa a aaaaaaaaaaaaaa aaaa aaaaaa aaa 
aaaaaaaa aaa aaaaaaaaaa aaa aaaaa aaa a aaaaaaaaaaaaa aaaaaaaa 
aaaaaaaaaaaaaa aaa aaaaaaaa aa aaa aaaa aaaaaaaaa aaaaaaaa aaa 
aaaaaaaaaaa aa aaa aaaa aaaaaaaaa aa aaaa aaaaaaa aa aaaaaaaaa 
 
 
4.  aa aaa aaaa aaaaaa aa aaaaaaaa aaaaaaaa aaaa aaaa aaaa 
aaaaaaaaaaaaaaa aaaaaaaaaaaaa aaa aaa 
 
 
II.  Integrals of Trigonometric Functions  (Pages 338−339) 
 

sin u du =∫                a aaa a a a                  a 

cosu du =∫                 aaa a a a                a 

tanu du =∫                     a aaaaaa aa a a                         a 

cot u du =∫                        aaaaaa aa a a                           a 

secu du =∫                   aaaaaa a a aaa aa a a                    a 

cscu du =∫                  a aaaaaa a a aaa aa a a                    a 

 

Example 4: Find csc5x dx∫  

 aaaaaaaaaaaa aa a aaa aaa a a 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to integrate 
trigonometric functions 
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Section 5.3 Inverse Functions 
 
Objective: In this lesson you learned how to determine whether a 

function has an inverse function. 
 
 
 
 
 
 
 
 
 
 
I.  Inverse Functions  (Pages 343−344) 
 
For a function f that is represented by a set of ordered pairs, you 

can form the inverse function of f by         aaaaaaaaaaaaa aaa aaa 

aaa aaaaaa aaaaaaaaaaa aa aaaa aaaaa aaaaa                                . 

 
For a function f and its inverse f −1, the domain of f is equal to  

          aaa aaaaa aa a aa          , and the range of f is equal to  

          aaa aaaaaa aa a aa          . 

 
State three important observations about inverse functions. 
 
1.  aa a aa aaa aaaaaaa aaaaaaaa aa aa aaaa a aa aaa aaaaaaa 
aaaaaaaa aa aa 
 
 
2.  aaa aaaaaa aa a aa aa aaaaa aa aaa aaaaa aa aa aaa aaa aaaaa aa 
aa aa aa aaaaa aa aaa aaaaaa aa aa 
 
 
3.  a aaaaaaaa aaaa aaa aaaa aa aaaaaaa aaaaaaaaa aaa aa aa 
aaaaa aaa aaaaaaa aaaaaaaa aa aaaaaaa 
 
 
To verify that two functions, f and g, are inverse functions of 

each other, . . .      aaaa aaaaaaa aaa aaaaaaaa aa aaaa aa aaaaa 

aaaaaaaaaaaa aaa aaaaa aa aaa aaaaaaaa aaaaaaaa a aaa aaaaa a 

aa aaa aaaaaa aa aaa aaaaa aaaaaaaaa aaaa aaa aaaaaaaaa aaa 

aaaaaaaa aa aaaa aaaaaa 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to verify that one 
function is the inverse 
function of another 
function 

Important Vocabulary  Define each term or concept. 
 
Inverse function  a aaaaaaaa a aa aaa aaaaaaa aaaaaaaa aa aaa aaaaaaaa a aa aaaaaaa 
a a aaa aaaa a aa aaa aaaaaa aa a aaa aaaaaaa a a aaa aaaa a aa aaa aaaaaa aa aa aaa 
aaaaaaaa a aa aaaaaaa aa a aaa 
Horizontal Line Test  a aaaa aaaa aaaaaa aaaa a aaaaaaaa a aaa aa aaaaaaa aaaaaaaa 
aa aaa aaaa aa aaaaa aaaaaaaaaa aaaa aaaaaaaaaa aaa aaaaa aa a aa aaaa aaaaa 
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Example 1: Verify that the functions 32)( −= xxf  and 

2
3)( += xxg  are inverse functions of each other. 

 
 
 
The graph of f −1 is a reflection of the graph of f in the line 

               a a a               . 

 
The Reflective Property of Inverse Functions states that the 

graph of f contains the point (a, b) if and only if                       aa 

aaaa aa a aa aaaaaaaa aaa aaaaa aaa aa                                           . 

 
 
II.  Existence of an Inverse Function  (Pages 345−347) 
 
State two reasons why the horizontal line test is valid. 
 
1.  a aaaaaaaa aaa aa aaaaaaa aaaaaaaa aa aaa aaaa aa aa aa 
aaaaaaaaaaa 
 
2.  aa a aa aaaaaaaa aaaaaaaaa aa aaa aaaaaa aaaaaaa aaaa aa aa 
aaaaaaaaaa aaa aaaaaaaaa aaa aa aaaaaaa aaaaaaaaa 
 
 
 
Example 2: Does the graph of the function shown below 

have an inverse function? Explain. 
  aaa aa aaaaaaa aaaa aaa aaaaaaaaaa aaaa aaaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
Complete the following guidelines for finding an inverse 

function. 

1) aaaaaaaaa aaaaaaa aaa aaaaaaaa aaaaa aa a a aaaa aaa aa 

aaaaaaa aaaaaaaaa 

What you should learn 
How to determine 
whether a function has an 
inverse function 

y

-5

-3

-1

1

3

5

-5 -3 -1 1 3 5
x
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2) aaaaa aaa a aa a aaaaaaaa aa aa  a a aaaa a a aaaaaa 

3) aaaaaaaaaaa a aaa aa aaa aaaaaaaaa aaaaaaaa aa a a a aaaaaa 

4) aaaaaa aaa aaaaaa aa a aa aa aa aaa aaaaa aa aa 

5) aaaaaa aaaa aaa aaaaaa a a aaa a aaaaaaaa a aa 

 
Example 3: Find the inverse (if it exists) of 54)( −= xxf . 
  a aaaaa a aaaaa a aaaa 
 
 
 
 
 
 
III.  Derivative of an Inverse Function  (Pages 347−348) 
 
Let f be a function whose domain is an interval I. If f has an 
inverse function, then the following statements are true. 
 
1.  aa a aa aaaaaaaaaa aa aaa aaaaaaa aaaa a aa aa aaaaaaaaaa aa 
aaa aaaaaaa 
 
2.  aa a aa aaaaaaaaaa aa aaa aaaaaaa aaaa a aa aa aaaaaaaaaa aa 
aaa aaaaaaa 
 
3.  aa a aa aaaaaaaaaa aa aaa aaaaaaa aaaa a aa aa aaaaaaaaaa aa 
aaa aaaaaaa 
 
4.  aa a aa aaaaaaaaaaaaaa aa aa aaaaaaaa aaaaaaaaaa a aaa a 
aaaa a aa aaaa a aa aa aaaaaaaaaaaaaa aa aaaaa 
 
 
 
Let f be a function that is differentiable on an interval I. If f has 

an inverse function g, then g is                              aaaaaaaaaaaaaa 

aa aaa a aaa aaaaa a aaaaaaa a a                                       . 

Moreover, 1( ) , ( ( )) 0
( ( ))

g x f g x
f g x

′ ′= ≠
′

. 

 
This last theorem can be interpreted to mean that               aaaaaa 

aa aaaaaaa aaaaaaaaa aaaa aaaaaaaaaa aaaaaa                               . 

 
 
 
 
 

What you should learn 
How to find the 
derivative of an inverse 
function 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 5.4 Exponential Functions:  Differentiation and  
Integration 

 
Objective: In this lesson you learned about the properties of the 

natural exponential function and how to find the 
derivative and antiderivative of the natural exponential 
function. 

 
I.  The Natural Exponential Function  (Pages 352−353) 
 
The inverse function of the natural logarithmic function 

( ) lnf x x=  is called the                                aaaaaaa aaaaaaaaaaa 

aaaaaaaa                       and is denoted by 1( ) xf x e− = . That is, 

xy e=  if and only if                   a a aa a                    . 

 
Example 1: Solve 5972 =−−xe  for x. Round to three decimal 

places. 
 a a aaaaa 
 
 
 
 
Example 2: Solve 285ln4 =x  for x. Round to three decimal 

places. 
 a a aaaaaaa 
 
 
 
 
Complete each of the following operations with exponential 
functions. 
 
1.  a be e =                  aaaa                 . 
 

2.  
a

b

e
e

=                 aaaa                 . 

 
List four properties of the natural exponential function. 
 
1.  aaa aaaaaa aa aaaa a aa aa aaaa aaa aaa aaa aaaaa aa aaa aaa 
 
2.  aaa aaaaaaaa aaaa a aa aa aaaaaaaaaaa aaaaaaaaaaa aaa 
aaaaaaaaaa aa aaa aaaaaa aaaaaaa 
 
3.  aaa aaaaaa aa aaaa a aa aa aaaaaaa aaaaaa aa aaa aaaaaa 
aaaaaaa 
4.  aaa aa a a aaa aaa aa a a 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to develop 
properties of the natural 
exponential function 
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    aa a a                      aa a    a 
 
 
II.  Derivatives of Exponential Functions  (Pages 354−355) 
 
Let u be a differentiable function of x. Complete the following 

rules of differentiation for the natural exponential function: 

xd e
dx

⎡ ⎤ =⎣ ⎦                   aa                   . 

ud e
dx

⎡ ⎤ =⎣ ⎦              aa aaaaaaa                     . 

 
Example 3: Find the derivative of 2( ) xf x x e= . 

 aaaa a aaaa 
 
 
 
 
III.  Integrals of Exponential Functions  (Pages 356−357) 
 
Let u be a differentiable function of x. 
 

xe dx =∫                        aa a a                 a  

 
ue du =∫                 aa a a                   a 

 
 

Example 4: Find 2xe dx∫ . 

aaaaa aaa a a 
 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 

What you should learn 
How to differentiate 
natural exponential 
functions 

What you should learn 
How to integrate natural 
exponential functions 
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Section 5.5 Bases Other Than e and Applications 
 
Objective: In this lesson you learned about the properties, 

derivatives, and antiderivatives of logarithmic and 
exponential functions that have bases other than e. 

 
I.  Bases Other than e  (Pages 362−363) 
 
If a is a positive real number ( 1)a ≠  and x is any real number, 

then the exponential function to the base a is denoted by xa  

and is defined by                  aa a aaaa aaa              . If a = 1, then 

1 1xy = =  is a                 aaaaaaaa aaaaaaaa                 . 

 
In a situation of radioactive decay, half-life is           aaa aaaaaa 

aa aaaaa aaaaaaaa aaa aaaa aa aaa aaaaa aa a aaaaaa aa aaaaaaaaa 

aaaaaaaa aa aaaaa                                                                      . 

 
If a is a positive real number ( 1)a ≠  and x is any positive real 

number, then the logarithmic function to the base a is denoted 

by loga x  and is defined by loga x =            aaaa aa aa a              .  

 
Complete the following properties of logarithmic functions to the 
base a. 
 
1)  1loga  =           a          a 
 
2)  log ( )a xy  =           aaaa a a aaaa a           
 
3.  log n

a x  =          a aaaa a   
 

4.  loga
x
y

 =           aaaa a a aaaa a           

 
State the Properties of Inverse Functions 
 
a a aa aa aaa aaaa aa a a aaaa a 
 
aaaaa a a a      aaa a a a 
 
aaaa aa a aa aaa aaa a 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to define 
exponential functions that 
have bases other than e 
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The logarithmic function to the base 10 is called the       aaaaaa 

aaaaaaaaaaa aaaaaaaa                       . 

 

Example 1: (a)  Solve 
3
1log8 =x  for x. 

 (b)  Solve 04.05 =x  for x. 
 aaa  a a a     aaa  a a a a 
 
 
 
II.  Differentiation and Integration  (Pages 364−365) 
 
To differentiate exponential and logarithmic functions to other 

bases, you have three options: 

 
1.  aaa aaa aaaaaaaaaaa aa aa aaa aaaa a aaa aaaaaaaaaaaaa aaaaa 
aaa aaaaa aaa aaa aaaaaaa aaaaaaaaaaa aaa aaaaaaaaaaa 
aaaaaaaaaa 
 
2.  aaa aaaaaaaaaaa aaaaaaaaaaaaaaaa aa 
 
3.  aaa aaa aaaaaaaaaaaaaaa aaaaa aaa aaaaa aaaaa aaaa aa 
 
Let a be a positive real number ( 1)a ≠  and let u be a 

differentiable function of x. Complete the following formulas for 

the derivatives for bases other than e. 

xd a
dx

⎡ ⎤ =⎣ ⎦                  aaa aa aa                   . 

ud a
dx

⎡ ⎤ =⎣ ⎦             aaa aa aa aaaaaaa                     . 

[log ]a
d x
dx

=                a a aaaa aa a a                  . 

[log ]a
d u
dx

=                a a aaaa aa a a aaaaaaa                 . 

 
Occasionally, an integrand involves an exponential function to a 

base other than e. When this occurs, there are two options:  

(1)                   aaaaaaa aa aaaa a aaaaa aaa aaaaaaa aa a aaaa aaa 

aaa aaaa aaaa                             or (2) integrate directly using the 

integration formula xa dx =∫                   aaa aa aa a a                 . 

What you should learn 
How to differentiate and 
integrate exponential 
functions that have bases 
other than e 
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Let n be any real number and let u be a differentiable function of 
x. The Power Rule for Real Exponents gives. 
 

[ ]nd x
dx

 =             aaaaa                  . 

[ ]nd u
dx

 =             aaaaa aaaaaaa                  . 

 
 
III.  Applications of Exponential Functions  (Pages 366−367) 
 
Complete the following limit statement: 
 

1 1lim 1 lim
x x

x x

x
x x→∞ →∞

+⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 =                 a                . 

 
 
Let P be the amount deposited, t the number of years, A the 
balance after t years, and r the annual interest rate (in decimal 
form), and n the number of compounding per year. Complete the 
following compound interest formulas: 
 
Compounded n times per year:          a a aaa a aaaaaa         a 
 
Compounded continuously:          a a aaaa         a 
 
Example 2: Find the amount in an account after 10 years if 

$6000 is invested at an interest rate of 7%, 
(a) compounded monthly. 
(b) compounded continuously. 

  aaa  aaaaaaaaaa          aaa  aaaaaaaaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to use exponential 
functions to model 
compound interest and 
exponential growth 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 
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Section 5.6  Inverse Trigonometric Functions: Differentiation 
 
Objective: In this lesson you learned about the properties of inverse 

trigonometric functions and how to find derivatives of 
inverse trigonometric functions. 

 
I.  Inverse Trigonometric Functions  (Pages 373−375) 
 
None of the six basic trigonometric functions has                      aa 

aaaaaaa aaaaaaaa                            . This is true because all six 

trigonometric functions are                  aaaaaaaa aaa aaaaaaaaa 

aaa aaa aaaaaaaaa                        . However, their domains can be 

redefined in such a way that they will have inverse functions on 

                   aaa aaaaaaaaaa aaaaaaa                             . 

 
For each of the following definitions of inverse trigonometric 
functions, supply the required restricted domains and ranges. 
 
    Domain   Range   

y = arcsin x  iff  sin y = x      a a a a a a      a     a aaa a a a aaa      a 
 
y = arccos x  iff  cos y = x      a a a a a a      a           a a a a a          a 
 
y = arctan x  iff  tan y = x      a a a a a a      a     a aaa a a a aaa      a 
 
y = arccot x  iff  cot y = x      a a a a a a      a           a a a a a          a 
 
y = arcsec x  iff  sec y = x            aaa a a          a     a a a a a a a a aaa    a 
 
y = arccsc x  iff  csc y = x            aaa a a          a   a aaa a a a aaaa a a a  a 
 
An alternative notation for the inverse sine function is 

             aaaaa a                . 

 
Example 1: Evaluate the function:  )1(arcsin − . 
 a aaa 
 

Example 2: Evaluate the function:  
2
1arccos . 

 aaa 
 
Example 3: Evaluate the function:  arcos (0.85). 
 aaaaaa 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to develop 
properties of the six 
inverse trigonometric 
functions 
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State the Inverse Property for the Sine function. 
 
aa a a a a a a aaa a aaa a a a aaaa aaaaaaaaaaaaaaa aa a a aaa 
aaaaaaaaaa aa a aaa 
 
 
State the Inverse Property for the Cosine function. 
 
aa a a a a a a aaa a a a a aa aaaaaaaaaaaaaaa aa a a aaa 
aaaaaaaaaa aa a aaa 
 
 
State the Inverse Property for the Tangent function. 
 
aa a aa a aaaa aaaaaa aaa a aaa a a a aaaa aaaaaaaaaaaaaaa aa a a 
aaa aaaaaaaaaa aa a aaa 
 
 
 
II.  Derivatives of Inverse Trigonometric Functions   
      (Pages 376−377) 
 
Let u be a differentiable function of x. 

[ ]arcsind u
dx

=   

[ ]arccosd u
dx

=   

[ ]arctand u
dx

=   

[ ]arccotd u
dx

=   

[ ]arcsecd u
dx

=   

[ ]arccscd u
dx

=   

 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 

What you should learn 
How to differentiate an 
inverse trigonometric 
function 

aaa 

a a aaa 

a a aaa 

a aaa 

a a aaa 

aaa 

a a aaa 

a aaa 

aa a aa 

aaa 

aa a aa 

a aaa 
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Section 5.7 Inverse Trigonometric Functions:  Integration 
 
Objective: In this lesson you learned how to find antiderivatives of 

inverse trigonometric functions. 
 
I.  Integrals Involving Inverse Trigonometric Functions   
     (Pages 382−383) 
 
Let u be a differentiable function of x, and let a > 0. 

 

2 2

du
a u−∫  =          aaaaaa aaaaa a a             . 

 

2 2

du
a u+∫  =         aaaaa aaaaaa aaaaa a a             . 

 

2 2

du
u u a−∫  =         aaaaa aaaaaa aa a a aaa a a             . 

 

Example 1: 4

6
4 9

x dx
x+∫  

 a aaaaaaaaaaaaa a a 
 
 
 
 
 
 
II.  Completing the Square  (Pages 383−384) 
 
Completing the square helps when                       aaaaaaaaa 

aaaaaaaaa aaa aaaaaaaa aa aaa aaaaaaaaa                                . 

 
Example 2: Complete the square for the polynomial:  

2 6 3x x+ + . 
 aa a aaa a a 
 
 
 
 
Example 3: Complete the square for the polynomial:  

22 16x x+ . 
 aaaa a aaa a aaa 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to integrate 
functions whose 
antiderivatives involve 
inverse trigonometric 
functions 

What you should learn 
How to use the method of 
completing the square to 
integrate a function 
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III.  Review of Basic Integration Rules  (Pages 385−386) 
 
Complete the following selected basic integration rules. 
 

1u dx du
u u
′

= =∫ ∫            aaa a a a a            a 

 

du =∫                       a a a                  a 

 

cot u du =∫                        aaaaaa aa a a                           a 

 

2 2

du
a u+∫  =         aaaaa aaaaaa aaaaa a a             a 

 

cosu du =∫                      aaa a a a                 a 

 
2sec u du =∫                      aaa a a a                 a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 

What you should learn 
How to review the basic 
integration rules 
involving elementary 
functions 
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Section 5.8 Hyperbolic Functions 
 
Objective: In this lesson you learned about the properties of 

hyperbolic functions and how to find derivatives and 
antiderivatives of hyperbolic functions. 

 
I.  Hyperbolic Functions  (Pages 390−392) 
 
Complete the following definitions of the hyperbolic functions. 
 
sinh x =          aaa a aaaa a a           . 
 
cosh x =          aaa a aaaa a a           . 
 
tanh x =          aaaaa aa a aaaaa aa          . 
 
csch x =         a a aaaaa aaa  a a a           . 
 
sech x =              a a aaaaa aa                  . 
 
coth x =         a a aaaaa aaa  a a a            . 
 
Complete the following hyperbolic identities. 
 

2 2cosh sinhx x−  =                 a                   . 
 

2 2tanh sechx x+  =                 a                   . 
 

2 2coth cschx x−  =                 a                   . 
 

1 cosh 2
2

x− +  =                 aaaaa a                . 

 
1 cosh 2

2
x+  =                 aaaaa a                . 

 
2 sinh x cosh x =                 aaaa aa                . 
 

2 2cosh sinhx x+  =               aaaa aa                . 
 
sinh (x + y)=          aaaa a aaaa a a aaaa a aaaa a       . 
 
sinh (x − y)=          aaaa a aaaa a a aaaa a aaaa a       . 
 
cosh (x + y)=          aaaa a aaaa a a aaaa a aaaa a       . 
 
cosh (x − y)=          aaaa a aaaa a a aaaa a aaaa a       . 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to develop 
properties of hyperbolic 
functions 
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II.  Differentiation and Integration of Hyperbolic Functions   
      (Pages 392−394) 
 
Let u be a differentiable function of x. Complete each of the 
following rules of differentiation and integration. 
 

[sinh ]d u
dx

 =                            aaaaa aa aa                  . 

 

[cosh ]d u
dx

 =                            aaaaa aa aa                  . 

 

[tanh ]d u
dx

 =                          aaaaaa aa aa                  . 

 

[coth ]d u
dx

 =                        a aaaaaa aa aa                  . 

 

[sech ]d u
dx

 =              a aaaaa a aaaa aa aa                  . 

 

[csch ]d u
dx

 =              a aaaaa a aaaa aa aa                  . 

 

coshu du∫  =                            aaaa a a a                  . 

 

sinhu du∫  =                            aaaa a a a                  . 

 
2sech u du∫  =                            aaaa a a a                  . 

 
2csch u du∫  =                         a aaaa a a a                  . 

 

sech tanhu u du∫  =                a aaaa a a a                  . 

 

csch cothu u du∫  =                a aaaa a a a                  . 

 
 
 
 
 
 
 

What you should learn 
How to differentiate and 
integrate hyperbolic 
functions 
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III.  Inverse Hyperbolic Functions  (Pages 394−396) 
 
State the inverse hyperbolic function given by each of the 
following definitions and give the domain for each. 
     Domain   

( )2ln 1x x+ +  =            aaaaaa a           ,     aaaa aa          . 

 

( )2ln 1x x+ −  =            aaaaaa a           ,        aaa aa          . 

 
1 1ln
2 1

x
x

+
−

 =                  aaaaaa a               ,        aaaa aa          . 

 
1 1ln
2 1

x
x

+
−

 =                  aaaaaa a               ,  aaaa aaa a aaa aa        . 

 
21 1ln x

x
+ −  =                aaaaaa a           ,        aaa aa          . 

 
21 1ln x

x x

⎛ ⎞++⎜ ⎟⎜ ⎟
⎝ ⎠

 =            aaaaaa a          ,  aaaa aa a aaa aa        . 

 
 
IV.  Differentiation and Integration of Inverse Hyperbolic  
        Functions  (Pages 396−397) 
 
Let u be a differentiable function of x. Complete each of the 
following rules of differentiation and integration. 
 

[ ]
2 1

d u
dx u

′
=

+
 

 

[ ]
2 1

d u
dx u

′
=

−
 

 

[ ] 21
d u
dx u

′
=

−
 

 

[ ] 21
d u
dx u

′
=

−
 

 

[ ]
21

d u
dx u u

′−=
−

 

 
 

What you should learn 
How to develop 
properties of inverse 
hyperbolic functions 

What you should learn 
How to differentiate and 
integrate functions 
involving inverse 
hyperbolic functions 

    aaaaaa aa 

    aaaaaa aa 

    aaaaaa aa 

    aaaaaa aa 

    aaaaaa aa 
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[ ]
21

d u
dx u u

′−=
+

 

 
 

2 2

du
u a±∫  =        aaaa a aaa a aaa a a                   . 

 

2 2

du
a u−∫  =      a a aaaa aaa aa a aa a aa a aa a a a                   . 

 

2 2

du
u a u±∫  =      aaaaaa  aaa aa a aaa a aaa a aaaa a a             . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 

    aaaaaa aa 
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Chapter 6 Differential Equations 
 
Section 6.1 Slope Fields and Euler’s Method 
 
Objective: In this lesson you learned how to sketch a slope field of a 

differential equation, and find a particular solution. 
 
I.  General and Particular Solutions  (Pages 406−407) 
 
Recall that a differential equation in x and y is an equation that  

    aaaaaaaa aa aa aaa aaaaaaaa aa a                                              . 

 
A function ( )y f x=  is a solution of a differential equation if 

          aaa aaaaaaaa aa aaaaaaaaa aaaa a aaa aaa aaaaaaaaaaa aaa 

aaaaaaaa aa aaaa aaa aaa aaaaaaaaaaa                                        . 

The general solution of a differential equation is                        a 

aaaaaa aa aaaaaaaaa aa aaa aaaaaaaaaaaa aaa                                . 

The order of a differential equation is determined by              aaa 

aaaaaaaaaa aaaaaaaaaa aaaaaaa                                                     . 

 
Geometrically, the general solution of a first-order differential 

equation represents a family of curves known as              aaaaaaa 

aaaaaa                             , one for each value assigned to the 

arbitrary constant. Particular solutions of a differential equation 

are obtained from               aaaaaaa aaaaaaaaaa               that give 

the value of the dependent variable or one of its derivatives for a 

particular value of the independent variable. 

 
Example 1: For the differential equation 2 0y y y′′ ′− − = , 

verify that 2xy Ce=  is a solution, and find the 
particular solution determined by the initial 
condition y = 5 when x = 0. 

aa a aaaa 
 
II.  Slope Fields  (Pages 408−409) 
 
Solving a differential equation analytically can be difficult or 

even impossible. However, there is a                       aaaaaaaaa 

aaaaaaaa                 you can use to learn a lot about the solution 

of a differential equation. Consider a differential equation of the 

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
How to use initial 
conditions to find 
particular solutions of 
differential equations 

What you should learn 
How to use slope fields 
to approximate solutions 
of differential equations 
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form y′ = F(x, y) where F(x, y) is some expression in x and y. At 

each point (x, y) in the xy-plane where F is defined, the 

differential equation determines the           aaa aa a aaaa aa        a 

of the solution at that point. If you draw a short line segment 

with slope F(x, y) at selected points (x, y) in the domain of F, 

then these line segments form a             aaaaa aaaaa              , or a 

direction field for the differential equation y′ = F(x, y). Each line 

segment has                aaa aaaa aaaaa                   as the solution 

curve through that point. A slope field shows                           aaa 

aaaaaaa aaaaa aa aaa aaa aaaaaaaaa                               and can be 

helpful in getting a visual perspective of the directions of the 

solutions of a differential equation. 

 
A solution curve of a differential equation y′ = F(x, y) is simply  

                              a aaaaa aa aaa aaaaaaaa aaaaa aaaaaaa aaaa aa 

aaaa aaaaa aaa aa aaa aaaaa aaaaa aa aaaa aa                             . 

 
 
III.  Euler’s Method  (Page 410) 
 
Euler’s Method is                                   a aaaaaaaaa aaaaaaaa aa 

aaaaaaaaaaaaa aaa aaaaaaaaaa aaaaa        aaa aa aaa aaaaaaaaaaaa 

aaaaaaaa aa a aaaa aa        aa aaa aaaaa aaaa aaa                           . 

From the given information, you know that the graph of the 

solution passes through                aaaaaaa aaaa aaa                and 

has a slope of               aaaaa aaa          at this point. This gives a 

“starting point” for             aaaaaaaaaaaaa aaa aaaaaaa                 . 

From this starting point, you can proceed in the direction             

                 aaaaaaaaa aa aaa aaaaa              . Using a small step h, 

move along the tangent line until you arrive at the point (x1, y1) 

where x1 =       aa a a        and y1 =          aa a aaaaaa aaa         . If 

you think of (x1, y1) as a new starting point, you can repeat the 

process to obtain               a aaaaaa aaaaa aaaa aaa           . 

 Homework Assignment 
Page(s) 
 
Exercises 

What you should learn 
How to use Euler’s 
Method to approximate 
solutions of differential 
equations 
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Section 6.2 Differential Equations:  Growth and Decay 
 
Objective: In this lesson you learned how to use an exponential 

function to model growth and decay. 
 
 
I.  Differential Equations  (Page 415) 
 
The separation of variables strategy is to                            aaaaaa 

aaa aaaaaaaaaaaa aaaaaaaa aa aaaa aaaa aaaaaaaa aaaaaa aa aaaa 

aaa aaaa aa aaa aaaaaaaa                                                    . 

 

Example 1: Find the general solution of 
23 1

2 5
dy x
dx y

−=
+

. 

aa a aa a aa a a a a 
 
 
 
 
 
II.  Growth and Decay Models  (Pages 416−419) 
 
In many applications, the rate of change of a variable y is  

        aaaaaaaaaaaa          to the value of y. If y is a function of 

time t, the proportion can be written as           aaa a aa                . 

 
The Exponential Growth and Decay Model states that if y is a 

differentiable function of t such that y > 0 and y′ = ky, for some 

constant k, then           a a aaaa             where C is the           aaaaa 

aaaaa aa a      a, and k is the         aaaaaaaa aa aaaaaaaaaaaa         . 

Exponential growth occurs when         a a a           and 

exponential decay occurs when          a a a           . 

 
Example 2: The rate of change of y is proportional to y. When 

t = 0, y = 5. When t = 4, y = 10. What is the value 
of y when t = 2? 

 aaaaa 
 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use separation of 
variables to solve a 
simple differential 
equation 

What you should learn 
How to use exponential 
functions to model 
growth and decay in 
applied problems 
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In a situation of radioactive decay, half-life is              aaa aaaaaa 

aa aaaaa aaaaaaaa aaa aaaa aa aaa aaaaa aa a aaaaaa aa aaaaaaaaa 

aaaaaaaa aa aaaaa                                                                      . 

 
Newton’s Law of Cooling states that              aaa aaaa aa aaaaaa 

aa aaa aaaaaaaaaaa aa aa aaaaaa aa aaaaaaaaaaaa aa aaa aaaaaaaa 

aaaaaaa aaa aaaaaaaa aaaaaaaaaaa aaa aaa aaaaaaaaaaa      aa aaa 

aaaaaaaaaaa aaaaaa                                                                . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 

y

x

y

x

y

x
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Section 6.3 Separation of Variables and the Logistic 
Equation 

 
Objective: In this lesson you learned how to use separation of 

variables to solve a differential equation. 
 
 
I.  Separation of Variables  (Pages 423−424) 
 
Consider a differential equation that can be written in the form 

( ) ( ) 0dyM x N y
dx

+ = , where M is a continuous function of x 

alone and N is a continuous function of y alone. Such equations 

are said to be              aaaaaaaaa                 , and the solution 

procedure is called                aaaaaaaaaa aa aaaaaaaa                   . 

For this type of equation, all x terms can be                   aaaaaaaaa 

aaaa aa                 , all y terms can be                            aaaaaaaaa 

aaa aa                   , and a solution can be obtained by integration. 

 
Give an example of a separable differential equation. 
 
aaaaaaa aaaa aaaaa 
 
 
 
 
 
Example 1: Solve the differential equation 2 xyy e′ =  subject to 

the initial condition y = 3 when x = 0. 
aa a aa a a 

 
 
 
 
 
II.  Homogeneous Differential Equations  (Pages 425−426) 
 
Some differential equations that are not separable in x and y can 

be made separable by            a aaaaaa aa aaaaaaaaa              . This 

is true for differential equations of the form ( , )y f x y′ =  where f 

is a                      aaa aaaaaaaa                                              . The 

function given by ( , )f x y  is homogeneous of degree n if 

                aaaaaa a aaaaaa aa                     , where n is an integer. 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to recognize and 
solve differential 
equations that can be 
solved by separation of 
variables 

What you should learn 
How to recognize and 
solve homogeneous 
differential equations 
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A homogeneous differential equation is an equation of the 

form             aaaa aa aa a aaaa aa aa a a                 , where M and 

N are homogenous functions of the same degree. 

 
Example 2: State whether the function 

3 4 2 2( , ) 6 4f x y xy x x y= + −  is homogeneous. If 
so, what is its degree? 

 aaaa aaaaaa a 
 
 
 
 
If ( , ) ( , ) 0M x y dx N x y dy+ =  is homogeneous, then it can be 

transformed into a differential equation whose variables are 

separable by the substitution               a a aa                , where v is 

a differentiable function of x. 

 
 
III.  Applications  (Pages 427−428) 
 
Example 3: A new legal requirement is being publicized 

through a public awareness campaign to a 
population of 1 million citizens. The rate at which 
the population hears about the requirement is 
assumed to be proportional to the number of 
people who are not yet aware of the requirement. 
By the end of 1 year, half of the population has 
heard of the requirement. How many will have 
heard of it by the end of 2 years? 

 aaaaaaaaaaaaa aaaaaaa aaaaaaaa 
 
 
 
 
 
 
 
 
 
A common problem in electrostatics, thermodynamics, and 

hydrodynamics involves finding a family of curves, each of 

which is                 aaaaaaaaaa                to all members of a 

given family of curves. If one family of curves intersects another 

family of curves at right angles, then the two families are said to 

What you should learn 
How to use differential 
equations to model and 
solve applied problems 
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be               aaaaaaaa aaaaaaaaa                 , and each curve in one 

of the families is called an         aaaaaaaaa aaaaaaaaaa         of the 

other family. 

 
 
IV.  Logistic Differential Equation  (Pages 429−430) 
 
Exponential growth is unlimited, but when describing a 

population, there often exists some upper limit L past which 

growth cannot occur. This upper limit L is called the       aaaaaaa 

aaaaaaaa               , which is the maximum population y(t) that 

can be sustained or supported as time t increases. A model that is 

often used for this type of growth is the                             aaaaaaa 

aaaaaaaaaaaa aaaaaaaa                 1dy yky
dt L

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, where k and L 

are positive constants. A population that satisfies this equation 

does not grow without bound, but approaches            aaa aaaaaaa 

aaaaaaaa a                  as t increases. 

 
The general solution of the logistic differential equation is of the 

form y = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to solve and analyze 
logistic differential 
equations 

aa 

a a aaaaaa 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 
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Section 6.4 First-Order Linear Differential Equations 
 
Objective: In this lesson you learned how to solve a first-order 

linear differential equation and a Bernoulli differential 
equation. 

 
 
I.  First-Order Linear Differential Equations   
     (Pages 434−436) 
 
A first-order linear differential equation is an equation of the 

form              aaaaa a aaaaa a aaaa               , where P and Q are 

continuous functions of x. An equation that is written in this 

form is said to be in                 aaaaaaaa aaaa                  . 

 
To solve a linear differential equation,           aaaaa aa aa aaaaaaa 

aaaa aa aaaaaaaa aaa aaaaaaaaa aa aaa aaaa                                 . 

Then integrate P(x) and form the expression ( )( ) P x dxu x e∫= , 

which is called a(n)            aaaaaaaaaaa aaaaaa            . The 

general solution of the equation is y =           a                              . 

 
 
Example 1: Write 5 (2 )x xe y e y′ = − +  in standard form. 
aaa a aaaaa a aaa a aaaa 
 
 
 
 
 
Example 2: Find the general solution of 63 xy y e′ − = . 
 
aaaaaaaaaaaaa a aa 
 
 
 
 
 
II.  Applications  (Pages 436−438) 
 
Give examples of types of problems that can be described in 
terms of a first-order linear differential equation. 
 
aaaaaaa aaaa aaaaa 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to solve a first-order 
linear differential 
equation 

What you should learn 
How to use linear 
differential equations to 
solve applied problems 
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III.  Bernoulli Equation  (Pages 438−440) 
 
A well-known nonlinear equation, ( ) ( ) ny P x y Q x y′ + = , that 

reduces to a linear one with an appropriate substitution is 

                     aaa aaaaaaaaa aaaaaaaa                . 

 
State the general solution of the Bernoulli equation. 
 
aaaaaaa 
 
 
 
 
 
Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 

What you should learn 
How to solve a Bernoulli 
differential equation 

y

x

y

x

y

x
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Chapter 7 Applications of Integration 
 
Section 7.1 Area of a Region Between Two Curves 
 
Objective: In this lesson you learned how to use a definite integral to 

find the area of a region bounded by two curves. 
 
I.  Area of a Region Between Two Curves  (Pages 448−449) 
 
If f and g are continuous on [a, b] and ( ) ( )g x f x≤  for all x in        

[a, b], then the area of the region bounded by the graphs of f and 

g and the vertical lines x = a and x = b is 
b

a
A = ∫       aaaaa a aaaaa aa            . 

 
Example 1: Find the area of the region bounded by the graphs 

of 26 3y x x= + − , 2 9y x= − , x = −2, and x = 2. 
aaaaa 

 
 
 
 
 
II.  Area of a Region Between Intersecting Curves 
       (Pages 450−452) 
 
A more common problem involves the area of a region bounded 

by two intersecting graphs, where the values of a and b must be 

              aaaaaaaaaa                  . 

 
Example 2: Find the area of the region bounded by the graphs 

of 2 5y x= −  and 1y x= − . 
aaaaa 

 
 
 
 
 
 
 
If two curves intersect at more than two points. Then to find the 

area of the region between the graphs, you must                    aaaa 

aaa aaaaaa aa aaaaaaaaaaaa aaa aaaaa aa aaa aaaaa aaaaa aa aaaa 

aaa aaaaa aa aaaa aaaaaaaa aaaaaaa aa aaa aaaaaa                       . 

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
How to find the area of a 
region between two 
curves using integration 

What you should learn 
How to find the area of a 
region between 
intersecting curves using 
integration 
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III.  Integration as an Accumulation Process  (Page 453) 
 
In this section, the integration formula for the area between two 

curves was developed by using a                  aaaaaaaa                as 

the representative element. For each new application in the 

remaining sections of this chapter, an appropriate representative 

element will be constructed using                 aaaaaaaaaaa aaaaaaa 

aaa aaaaaaa aaaa                 . Each integration formula will then 

be obtained by             aaaaaaa aa aaaaaaaaaaaa                  these 

representative elements. 

 

What you should learn 
How to describe 
integration as an 
accumulation process 

Homework Assignment 
 
Page(s) 
 
Exercises 

y

x

y

x

y

x
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Section 7.2 Volume:  The Disk Method 
 
Objective: In this lesson you learned how to find the volume of a 

solid of revolution by the disk and washer methods. 
 
 
I.  The Disk Method  (Pages 458−460) 
 
A solid of revolution is formed by       aaaaaaaaa a aaaaaa aa aaa 

aaaaa aaaaa a aaaa                                . The line is called        aaa 

aaaa aa aaaaaaaaaa                                  . The simplest such solid 

is                    a aaaaa aaaaaaaa aaaaaaaa aa aaaa                    , 

which is formed by revolving a rectangle about an axis adjacent 

to one side of the rectangle. 

 
To find the volume of a solid of revolution with the Disk 
Method, use one of the following formulas. 
 
Horizontal axis of revolution: 
 

Volume =         a      ∫          aaaaaaa aa                . 

 
 
Vertical axis of revolution: 
 

Volume =         a      ∫          aaaaaaa aa                . 

 
The simplest application of the disk method involves a plane 

region bounded by               aaa aaaaa aa a aaa aa aaaaaa             . 

If the axis of revolution is the x-axis, the radius R(x) is simply  

           aaaa             . 

 
Example 1: Find the volume of the solid formed by revolving 

the region bounded by the graph of 
2( ) 0.5 4f x x= +  and the x-axis, between x = 0 

and x = 3, about the x-axis. 
 aaaaaaaaaaaaa aaaaa aaaaa aaaaa 
 
 
II.  The Washer Method  (Pages 461−463) 
 
The Washer Method is used to find the volume of a solid of 

revolution that has                        a aaaa                           . 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find the volume 
of a solid of revolution 
using the disk method 

What you should learn 
How to find the volume 
of a solid of revolution 
using the washer method 

aa 

aa 

aa 

aa 
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Consider a region bounded by an outer radius R(x) and an inner 
radius r(x). The Washer Method states that if this region is 
revolved about its axis of revolution, the volume of the resulting 
solid is given by 
 

Volume =         a      ∫          aaaaaaaa a aaaaaaaa  aa                . 

 
Note that the integral involving the inner radius represents      aaa 

aaaaaa aa aaa aaaa                           and is                    aaaaaaaaaa 

aaaa                    the integral involving the outer radius. 

 
Example 2: Find the volume of the solid formed by revolving 

the region bounded by the graphs of 
2( ) 5 3f x x x= − + +  and ( ) 8g x x= − +  about the 

x-axis. 
 aaaaaaaaaaaaa aaaaaa aaaaa aaaaa 
 
 
 
III.  Solids with Known Cross Sections  (Pages 463−464) 
 
With the disk method, you can find the volume of a solid having 

a circular cross section whose area is 2A Rπ= . This method can 

be generalized to solids of any shape, as long as you know        a 

aaaaaaa aaa aaa aaaa aa aa aaaaaaaa aaaaa aaaaaaa                      . 

 
For cross sections of area A(x) taken perpendicular to the x-axis, 
 

Volume =  ∫          aaaa  aa                . 

 
For cross sections of area A(y) taken perpendicular to the y-axis, 
 

Volume =  ∫          aaaa  aa                . 

 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to find the volume 
of a solid with a known 
cross section 

aa 

aa 

aa 

aa 

aa 

aa 
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Section 7.3 Volume:  The Shell Method 
 
Objective: In this lesson you learned how to find the volume of a 

solid of revolution by the shell method. 
 
 
I.  The Shell Method  (Pages 469−471) 
 
To find the volume of a solid of revolution with the Shell 
Method, use one of the following formulas. 
 
Horizontal axis of revolution: 
 

Volume =        aa      ∫          aaaa aaaa aa                . 

 
 
Vertical axis of revolution: 
 

Volume =        aa      ∫          aaaa aaaa aa                . 

 
 
Example 1: Using the shell method, find the volume of the 

solid formed by revolving the region bounded by 
the graph of 3 2y x= +  and the x-axis, between             
x = 1 and x = 4, about the y-axis. 

 aaaa aaaaa aaaaa 
 
 
 
 
 
 
 
 
 
 
II.  Comparison of Disk and Shell Methods  (Pages 471−473) 
 
For the disk method, the representative rectangle is always  

             aaaaaaaaaaaaa                        to the axis of revolution. 

For the shell method, the representative rectangle is always  

               aaaaaaaa                      to the axis of revolution. 

 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find the volume 
of a solid of revolution 
using the shell method 

What you should learn 
How to compare the uses 
of the disk method and 
the shell method 

aa 

aa 

aa 

aa 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

y

x

y

x

y

x
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Section 7.4 Arc Length and Surfaces of Revolution 
 
Objective: In this lesson you learned how to find the length of a 

curve and the surface area of a surface of revolution. 
 
 
I.  Arc Length  (Pages 478−481) 
 
A rectifiable curve is                          aaa aaaa aaa a aaaaaa aaa 

aaaaaa                                 . A sufficient condition for the graph 

of a function f to be rectifiable between (a, f(a)) and (b, f(b)) is 

that                  a a aa aaaaaaaaaa aa aaa aa                         . Such 

a function is continuously differentiable on [a, b], and its graph 

on the interval [a, b] is a                 aaaaaa aaaaa                   . 

 
Let the function given by y = f(x) represent a smooth curve on 
the interval [a, b]. The arc length of f between a and b is  
 

s = ∫  

 
 
Similarly, for a smooth curve given by ( )x g y= , the arc length 
of g between c and d is 
 

s = ∫  

 
 
Example 1: Find the arc length of the graph of 

3 22 5 1y x x x= − + −  on the interval [0, 4]. 
 aaaaaaa aaaaa 
 
 
 
 
 
II.  Area of a Surface of Revolution  (Pages 482−484) 
 
If the graph of a continuous function is revolved about a line, the 

resulting surface is a                   aaaaa aa aaaaaaaaaa                  . 

 
Let ( )y f x=  have a continuous derivative on the interval [a, b]. 
The area S of the surface of revolution formed by revolving the 
graph of f about a horizontal or vertical axis is 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find the arc 
length of a smooth curve 

What you should learn 
How to find the area of a 
surface of revolution 
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s = ∫  

 
where r(x) is the distance between the graph of f and the axis of 
revolution. If ( )x g y=  on the interval [c, d], then the surface 
area is 
 

s = ∫  

 
where r(y) is the distance between the graph of g and the axis of 
revolution. 
 
Example 2: Find the area of the surface formed by revolving 

the graph of 2( ) 2f x x=  on the interval [2, 4] 
about the x-axis. 

 aaaaaaaa aaaaaa aaaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

y

x

y

x

y

x
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Section 7.5 Work 
 
Objective: In this lesson you learned how to find the work done by 

a constant force and by a variable force. 
 
 
I.  Work Done by a Constant Force  (Page 489) 
 
Work is done by a force when                                  aa aaaaa aa 

aaaaaa                                   . If an object is moved a distance D 

in the direction of an applied constant force F, then the work W 

done by the force is defined as                     a a aa                   . 

 
Give two examples of forces. 
 
aaaaaaa aaaa aaaaa aaaaaaaa aaaaaa aaaaaaa aaaaaaaaaaaa 
aaaaaaaaaaaaaa aaa aaaaaaaaaaaaaa 
 
 
A force can be thought of as             a aaaa aa a aaaa        ; a 

force changes the               aaaaa aa aaaaaa aa aaaaaa                 of 

a body. 

 
In the U.S. measurement system, work is typically expressed in 

             aaaaaaaaaaa aaaaaaaa aaaaaaaaa aa aaaaaaaaa                . 

In the centimeter-gram-second (C-G-S) system, the basic unit of 

force is the             aaaa               —the force required to produce 

an acceleration of 1 centimeter per second per second on a mass 

of 1 gram. In this system, work is typically expressed in      aaaaa 

aaaaaaaaaa aaaaaa                   or       aaaaaaaaaaaa aaaaaaaa        . 

 
Example 1: Find the work done in lifting a 100-pound barrel 

10 feet in the air. 
 aaaa aaaaaaaaaaa 
 
 
 
 
II.  Work Done by a Variable Force  (Pages 490−494) 
 
If a variable force is applied to an object, calculus is needed to 

determine the work done, because                aaa aaaaaa aa aaaaa 

aaaaaaa aa aaa aaaaaa aaaaaaa aaaaaaaa                                     . 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find the work 
done by a constant force 

What you should learn 
How to find the work 
done by a variable force 



136  Chapter 7     Applications of Integration 

 Larson/Edwards   Calculus 9e   Notetaking Guide 
  Copyright © Cengage Learning. All rights reserved. 

Definition of Work Done by a Variable Force 
If an object is moved along a straight line by a continuously 
varying force F(x), then the work W done by the force as the 
object is moved from x = a to x = b is 
 

0
1

lim
n

i
i

W W
Δ →

=

= Δ

=

∑

∫
 

 
 
Hooke’s Law states that the force F required to compress or 

stretch a spring (within its elastic limits) is proportional to the 

distance d that the spring is compressed or stretched from its 

original length. That is,                a a aa                      where the 

constant of proportionality k (the spring constant) depends on the 

specific nature of the spring. 

 
Newton’s Law of Universal Gravitation states that the force F 

of attraction between two particles of masses m1 and m2 is 

proportional to the product of the masses and inversely 

proportional to the square of the distance d between the two 

particles. That is,               a a aaaaaaaaaa                       . 

 
Coulomb’s Law states that the force between two charges q1 

and q2 in a vacuum is proportional to the product of the charges 

and inversely proportional to the square of the distance d 

between the two charges. That is,             a a aaaaaaaaaa             . 

 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

aa 

aa 
         aaaa aa          aa 
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Section 7.6 Moments, Centers of Mass, and Centroids 
 
Objective: In this lesson you learned how to find centers of mass 

and centroids. 
 
 
I.  Mass  (Page 498) 
 
Mass is                     a aaaaaaa aa a aaaaaa aaaaaaaaaa aa aaaaaaa 

aa aaaaaaa aaa aa aaaaaaaaaaa aa aaa aaaa  aaaaaa aaaaaaaaaaaaa 

aaaaaa aa aaaaa aaa aaaa aa                                                          . 

Force and mass are related by the equations                      aaaaa a 

aaaaaaaaaaaaaaaaaaa                     . 

 
 
II.  Center of Mass in a One-Dimensional System 
       (Pages 499−500) 
 
Consider an idealized situation in which a mass m is 

concentrated at a point. If x is the distance between this point 

mass and another point P, the moment of m about the point P 

is               aaaaaa a aa                  and x is the length of the  

            aaaaaa aaa               . 

 
Now imagine a coordinate line on which the origin corresponds 

to the fulcrum. Suppose several point masses are located on the 

x-axis. The measure of the tendency of this system to rotate 

about the origin is the            aaaaaa aaaaa aaa aaaaaa                 , 

and it is defined as          aaa aaa aa aaa a aaaaaaaa aaaa              . 

That is M0 =              aaaa a aaaa a a a aaaa                   . If M0 is 0, 

the system is said to be               aa aaaaaaaaaaa            . 

 
For a system that is not in equilibrium, the center of mass is 

defined as                      aaa aaaaa a aa aaaaa aaa aaaaaaa aaaaa 

aa aaaaaaaaa aa aaaaaa aaaaaaaaaaa                                          . 

Let the point masses 1 2, , , nm m mK  be located at 1 2, , , nx x xK . 

The center of mass is x  =             aaaa                 , where m =  

         aa a aa a a a a a aa              is the total mass of the system. 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
definition of mass 

What you should learn 
How to find the center of 
mass in a one-
dimensional system 
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III.  Center of Mass in a Two-Dimensional System 
         (Page 501) 
 
Let the point masses 1 2, , , nm m mK  be located at 1 1( , )x y , 

2 2( , )x y , . . . , ( , )n nx y . The moment about the y-axis is My =  

                  aaaa a aaaa a a a a a aaaa             . The moment about 

the x-axis is Mx =                   aaaa a aaaa a a a a a aaaa              . 

The center of mass ( , )x y , or center of gravity, is  

x  =             aaaa                 , and y  =             aaaa               , 

where m =          aa a aa a a a a a aa              is the total mass of 

the system. 

 
 
IV.  Center of Mass of a Planar Lamina  (Pages 502−504) 
 
A planar lamina is                     a aaaaa aaaa aaaaa aa aaaaaaaa 

aa aaaaaaaa aaaaaaa                     . Density is                             a 

aaaaaaa aa aaaa aaa aaaa aa aaaaaa                       ; however, for 

planar laminas, density is considered to be                a aaaaaaa aa 

aaaa aaa aaaa aaaa                 . Density is denoted by         a         . 

 
Let f and g be continuous functions such that ( ) ( )f x g x≥  on                
[a, b], and consider the planar lamina of uniform density ρ 
bounded by the graphs of ( )y f x= , ( )y g x= , and a x b≤ ≤ . 
 
The moment about the x-axis is given by 
 

[ ]xM dx
⎡ ⎤

= ⎢ ⎥
⎣ ⎦∫  

 
The moment about the y-axis is given by 
 

yM = ∫  

 
 
The center of mass ( , )x y  is given by x  =              aaaa             ,  

and y  =             aaaa               , where m =      a    ∫   aaaaa a aaaaa      . 

 

What you should learn 
How to find the center of 
mass in a two-
dimensional system 

What you should learn 
How to find the center of 
mass of a planar lamina 
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V.  Theorem of Pappus  (Page 505) 
 
State the Theorem of Pappus. 
 
aaa a aa a aaaaaa aa a aaaaa aaa aaa a aa a aaaa aa aaa aaaa aaaaa 
aaaa aaaa a aaaa aaa aaaaaaaaa aaa aaaaaaaa aa aa aa a aa aaa 
aaaaaaaa aaaaaaa aaa aaaaaaaa aa a aaa aaa aaaaa aaaa aaa 
aaaaaa a aa aaa aaaaa aa aaaaaaaaaa aaaaaa aa aaaaaaaaa a aaaaa 
aaa aaaa aa                  a a aaaaa aaaaa a aa aaa aaaa aa aa 
 
 
 
 
The Theorem of Pappus can be used to find the volume of a 

torus, which is                        a aaaaaaaaaaaaaaa aaaaa aaaaaa aa 

aaaaaaaaa a aaaaaaaa aaaaaa aaaaa a aaaa aa  aa aaaa aa aaa aaaa 

aaaaa aa aaa aaaaaa aaa aaaa aaa aaaaaaaaa                                 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to use the Theorem 
of Pappus to find the 
volume of a solid of 
revolution 

y

x

y

x

y
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 7.7 Fluid Pressure and Fluid Force 
 
Objective: In this lesson you learned how to find fluid pressure and 

fluid force. 
 
 
I.  Fluid Pressure and Fluid Force  (Pages 509−512) 
 
Pressure is defined as                                     aaa aaaaa aaa aaaa 

aa aaaa aaaa aaa aaaaaa aa a aaaa                                  . The fluid 

pressure on an object at a depth h in a liquid is             aaaaaaaa a 

a a aa                  , where w is the weight-density of the liquid per 

unit of volume. 

 
When calculating fluid pressure, you can use an important 

physical law called Pascal’s Principle, which states that        aaa 

aaaaaaaa aaaaaaa aa a aaaaa aa a aaaaa a aa aaaaaaaaaaa aaaaa aa 

aaa aaaaaaaaaa                                                                               . 

The fluid force on a submerged horizontal surface of area A is 

Fluid force = F =              aa a aaaaaaaaaaaaaaaa              . 

 
Example 1: Find the fluid force on a horizontal metal disk of 

diameter 3 feet that is submerged in 12 feet of 
seawater (w = 64.0). 

 aaaaaa aaaaaa 
 
 
 
 
 
 
The force F exerted by a fluid of constant weight-density w 
(per unit of volume) against a submerged vertical plane region 
from y = c to y = d is 
 

0
1

lim ( ) ( )
n

i i
i

F w h y L y y
Δ →

=

= Δ

=

∑

∫
 

 
where h(y) is the depth of the fluid at y an L(y) is the horizontal 
length of the region at y. 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find fluid 
pressure and fluid force 

aa 

aa 
         aaaaaa aa          aa   aa  
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Chapter 8  Integration Techniques, L’Hôpital’s 
    Rule, and Improper Integrals 
 
Section 8.1 Basic Integration Rules 
 
Objective: In this lesson you learned how to fit an integrand to one of 

the basic integration rules. 
 
 
I.  Fitting Integrands to Basic Rules  (Pages 520−523) 
 
In this chapter, you study several integration techniques that 

greatly expand the set of integrals to which the basic integration 

rules can be applied. A major step in solving any integration 

problem is                                              aaaaaaaaaaa aaaaa aaaaa 

aaaaaaaaaaa aaaa aa aaa                       . 

 
Basic Integration Rules 
 

( )kf u du =∫                       a a aaaa aa                  a 

 

[ ]( ) ( )f u g u du± =∫             a aaaa aa a a aaaa aa              a 

 

du =∫             a a aa                                          a 

 

             a aa aa                        = 
1

, 1
1

nu C n
n

+

+ ≠ −
+

 

 
du
u

=∫                  aaa a a a a              a 

 
ue du =∫                 aa a a                   a 

 
ua du =∫                aaaaa aa aa a a                   a 

 

sin u du =∫                a aaa a a a                  a 

 

cosu du =∫                 aaa a a a                a 

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
How to apply procedures 
for fitting an integrand to 
one of the basic 
integration rules 
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tanu du =∫                     a aaaaaa aa a a                         a 

 

cot u du =∫                        aaaaaa aa a a                           a 

 

secu du =∫                   aaaaaa a a aaa aa a a                    a 

 

cscu du =∫                  a aaaaaa a a aaa aa a a                    a 

 
2sec u du =∫                      aaa a a a                 a 

 
2csc u du =∫                     a aaa a a a                 a 

 

sec tanu u du =∫                      aaa a a a                 a 

 

csc cotu u du =∫                     a aaa a a a                 a 

 

2 2

du
a u−∫  =               aaaaaa aaaaa a a                  a 

 

2 2

du
a u+∫  =         aaaaa aaaaaa aaaaa a a             a 

 

2 2

du
u u a−∫  =         aaaaa aaaaaa aa a a aaa a a             a 

 
 
Name seven procedures for fitting integrands to basic rules. Give 
an example of each procedure. 
 
aaaaaa aaa aaaaaaaaaa aaaaaaaa aaa aaaaaaaaaa aaaaaaaa aaa 
aaaaaaa aaaaaa aaa aaaaaaaa aaaaaaaa aaaaaaaaaa aaa aaa 
aaaaaaaa aaaaa aa aaa aaaaaaaaaa aaa aaaaaaaaaaaaa aaaaaaaaaaa 
aaa aaaaaaaaaaaaaaa aa aaaaaaaaaaa aaaaaaaaaa 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 8.2 Integration by Parts 
 
Objective: In this lesson you learned how to find an antiderivative 

using integration by parts. 
 
 
I.  Integration by Parts  (Pages 527−532) 
 
The integration technique of integration by parts is particularly 

useful for             aaaaaaaaaa aaaaaaaaa aaa aaaaaaaa aa aaaaaaaa 

aaa aaaaaaaaaaaaaa aaaaaaaaa                                    . 

 
If u and v are functions of x and have continuous derivatives,  

then the technique of integration by parts states that  

u dv =∫           aa a a a aa              . 

 
List two guidelines for integration by parts: 
 
1.   aaa aaaaaaa aa aa aaa aaaa aaaaaaaaaaa aaaaaaa aa aaa 
aaaaaaaaa aaaa aaaa a aaaaa aaaaaaaaaaa aaaaa aaaa a aaaa aa 
aaa aaaaaaaaa aaaaaaaaa aa aaa aaaaaaaaaa 
 
2.   aaa aaaaaaa a aa aaa aaaaaaa aa aaa aaaaaaaaa aaaaa 
aaaaaaaaaa aa a aaaaaaaa aaaaaaa aaaa aa aaaa aa aaaa aa aaa 
aaaaaaaaa aaaaaaaaa aa aaa aaaaaaaaaa  aaaa aaaa aa aaaaaa 
aaaaaaaa aaa aa aa aaa aaaaaaaa aaaaaaaaaa 
 
 

Example 1: For the indefinite integral 2 2xx e dx∫ , explain 

which factor you would choose to be dv and which 
you would choose as u. 

 aaaaaa aaaa aaa aaaaaaaaaa aa aa aaaaaaa aaaaaaaa 
aaa aaa aaaaaaaaaa aa aaa aaaa aaaa aa aaa a a aa 
aaa aaa aa a aaa aaa 

 
 
 
Summary of Common Uses of Integration by Parts 
List the choices for u and dv in these common integration 
situations. 
 

1.  n axx e dx∫ ,     sinnx ax dx∫ ,     or     cosnx ax dx∫  

     aaa a a aa aaa aa a aaa aaa aaa  aaa aa aaa aa aa        . 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find an 
antiderivative using 
integration by parts 
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2.  lnnx x dx∫ ,     arcsinnx ax dx∫ ,     or     arctannx ax dx∫  

    aaa a a aa aa aaa aaa aa aaaaaa aa aaa aa a aa aa        . 
 

3.  sinaxe bx dx∫      or     cosaxe bx dx∫  

               aaa a a aaa aa aa aa aa aaa aa a aaa aa              . 
 
 
II.  Tabular Method  (Page 532) 
 
In problems involving repeated applications of integration by 
parts, a tabular method can help organize the work. This method 

works well for integrals of the form ∫          aa aaa aa aa           , 

∫          aa aaa aa aa           , and ∫              aa aaa aa              . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to use a tabular 
method to perform 
integration by parts 
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Section 8.3 Trigonometric Integrals 
 
Objective: In this lesson you learned how to evaluate trigonometric 

integrals. 
 
 
I.  Integrals Involving Powers of Sine and Cosine 
     (Pages 536−538) 
 
In this section you studied techniques for evaluating integrals of 

the form sin cosm nx x dx∫   and  sec tanm nx x dx∫  where either 

m or n is a positive integer. To find antiderivatives for these 

forms,                                                           aaa aa aaaa aaaa aaaa 

aaaaaaaaaaaa aa aaaaaaaaaaaaa aaaaaaaaa aa aaaaa aaa aaa aaaaa 

aaa aaaaa aaaa                                                                            . 

 

To break up sin cosm nx x dx∫  into forms to which you can apply 

the Power Rule, use the following identities. 
 

2 2sin cosx x+ =                  a                   . 

 
2sin x =          aa a aaa aaaaa                  . 

 
2cos x =          aa a aaa aaaaa                  . 

 
List three guidelines for evaluating integrals involving sine and 
cosine. 
 
aa  aa aaa aaaaa aa aaa aaaa aa aaa aaa aaaaaaaaa aaaa aaa aaaa 
aaaaaa aaa aaaaaaa aaa aaaaaaaaa aaaaaaa aa aaaaaaaa aaaaa 
aaaaaa aaa aaaaaaaaaaa 
 
aa  aa aaa aaaaa aa aaa aaaaaa aa aaa aaa aaaaaaaaa aaaa aaa 
aaaaaa aaaaaa aaa aaaaaaa aaa aaaaaaaaa aaaaaaa aa aaaaaa aaaaa 
aaaaaa aaa aaaaaaaaaaa 
 
aa  aa aaa aaaaaa aa aaaa aaaa aaa aaaaaa aaa aaaa aaa 
aaaaaaaaaaaa aaaa aaaaaaaa aaa aa aaa aaaaaaaaaa aaaaaaaaaa aaa 
aaaaa aaa aaaaa aa aaaaaaa aaa aaaaaaaaa aa aaa aaaaaa aa aaa 
aaaaaaa aaaa aaaaaaa aa aa aaaaaaaaa aaa 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to solve 
trigonometric integrals 
involving powers of sine 
and cosine 
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Wallis’s Formulas state that if n is odd (n ≥ 3), then 
/2

0
cosn x dx

π

=∫                aaaaaaaaaaaa a a a aa a aaaa                 . 

 
and that if n is even (n ≥ 2), then 
 

/2

0
cosn x dx

π

=∫           aaaaaaaaaa a a a aaa a aaaaaaaaaa            . 

 
 
II.  Integrals Involving Powers of Secant and Tangent 
      (Pages 539−541) 
 
List five guidelines for evaluating integrals involving secant and 

tangent of the form sec tanm nx x dx∫ . 

 
aa  aa aaa aaaaa aa aaa aaaaaa aa aaaa aaa aaaaaaaaa aaaa a 
aaaaaaaaaaaaaa aaaaaa aaa aaaaaaa aaa aaaaaaaaa aaaaaaa aa 
aaaaaaaaa aaaa aaaaaa aaa aaaaaaaaaaa 
 
aa  aa aaa aaaaa aa aaa aaaaaaa aa aaa aaa aaaaaaaaa aaaa a 
aaaaaaaaaaaaaa aaaaaa aaa aaaaaaa aaa aaaaaaaaa aaaaaaa aa 
aaaaaaaa aaaa aaaaaa aaa aaaaaaaaaaa 
 
aa  aa aaaaa aaa aa aaaaaa aaaaaaa aaa aaa aaaaa aa aaa aaaaaaa 
aa aaaa aaa aaaaaaaaa aaaaaaa a aaaaaaaaaaaaaaa aaaaaa aa a 
aaaaaaaaaaaaaa aaaaaaa aaaa aaaaaa aaa aaaaaa aa aaaaaaaaaaa 
 
aa  aa aaa aaaaaaaa aa aa aaa aaaa aaaaaa aaa aaaaa a aa aaa aaa 
aaaaaaaaa aaa aaaaaaaaaaa aa aaaaaaa 
 
aa  aa aaaa aa aaa aaaaa aaaa aaaaaaaaaa aaaaaaaa aaa 
aaaaaaaaaa aa aaaaa aaa aaaaaaaaa 
 
 
For integrals involving powers of cotangents and cosecants, 

                           aaa aaa aaaaaa a aaaaaaaa aaaaaaa aa aaaa aaaa 

aaa aaaaaa aa aaaaaaaa aaa aaaaaaa                                       . 

Another strategy that can be useful when integrating 

trigonometric functions is                         aa aaaaaaa aaa aaaaaa 

aaaaaaaaa aa aaaaaa aa aaaaa aaa aaaaaaa                                     . 

 
 
 

What you should learn 
How to solve 
trigonometric integrals 
involving powers of 
secant and tangent 
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III.  Integrals Involving Sine-Cosine Products with Different  
        Angles  (Page 541) 
 
Complete each of the following product-to-sum identities. 
 
sin sinmx nx =     aaaaaaaaaaaa a aaaa a aaaaa a aaaaa                . 
 
sin cosmx nx =      aaaaaaaaaaaa a aaaa a aaaa a aaaaa                . 
 
cos cosmx nx =     aaaaaaaaaaaa a aaaa a aaaa a aaaaa                . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to solve 
trigonometric integrals 
involving sine-cosine 
products with different 
angles 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 8.4 Trigonometric Substitution 
 
Objective: In this lesson you learned how to use trigonometric 

substitution to evaluation an integral. 
 
 
I.  Trigonometric Substitution  (Pages 545−549) 
 
Now that you can evaluate integrals involving powers of 

trigonometric functions, you can use trigonometric substitution 

to evaluate integrals involving the radicals 2 2a u− , 2 2a u+ , 

and 2 2u a− . The objective with trigonometric substitution is  

                aa aaaaaaaaa aaa aaaaaaa aa aaa aaaaaa                        . 

You do this with the     aaaaaaaaaaa aaaaaaaaaa aaaaa a a a aaaaa 

aaaaa a a a aaaaaa aaa aaaaa a aaaaa a a                                    . 

 
Trigonometric substitution (a > 0): 
 
1. For integrals involving 2 2a u− , let u =            a aa a          . 

Then 2 2a u−  =          a aaa a            , where −π/2 ≤ θ ≤ π/2. 

 
2. For integrals involving 2 2a u+ , let u =            a aa a          . 

Then 2 2a u+  =          a aaa a            , where −π/2 < θ < π/2. 

 
3. For integrals involving 2 2u a− , let u =            a aa a          . 

Then 2 2u a−  =          a a             if u > a, where 0 ≤ θ < π/2; 

or 2 2u a−  =         a a a             if u < − a, where π/2 < θ ≤ π. 

 
Special Integration Formulas (a > 0) 
 

2 2a u du−∫  =       

 
 

2 2u a du−∫  =       

 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use trigonometric 
substitution to solve an 
integral 
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2 2u a du+∫  =      

 
 
 
II.  Applications  (Page 550) 
 
Give two examples of applications of trigonometric substitution. 
 
aaaaaaa aaaa aaaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to use integrals to 
model and solve real-life 
applications 
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Section 8.5 Partial Fractions 
 
Objective: In this lesson you learned how to use partial fraction 

decomposition to integrate rational functions. 
 
 
I.  Partial Fractions  (Pages 554−555) 
 
The method of partial fractions is a procedure for  aaaaaaaaaaa 

a aaaaaaaa aaaaaaaa aaaa aaaaaaa aaaaaaaa aaaaaaaaa aa    aaaaa 

aaa aaa aaaaa aaa aaaaaaaaaaaa aaaaaaaa                                       . 

 
Decomposition of N(x)/D(x) into Partial Fractions 
 
1. Divide if improper:  If N(x)/D(x) is                    aa aaaaaaaa 

aaaaaaaa                 (that is, if the degree of the numerator is 

greater than or equal to the degree of the denominator), 

divide         aaa aaaaaaaaaaa aaaa aaa aaaaaaaa                   to 

obtain ( )
( )

N x
D x

=           aa aaaaaaaaaa a aaaaaaaaaa                 , 

where the degree of N1(x) is less than the degree of D(x). 

Then apply steps 2, 3, and 4 to the proper rational expression 

N1(x)/D(x). 

2. Factor denominator:  Completely factor the denominator 

into factors of the form       aaa a aaa  aaa  aaa a aa a aaa     a 

where ax2 + bx + c is irreducible. 

3. Linear factors:  For each factor of the form (px + q)m, the 

partial fraction decomposition must include the following 

sum of m fractions. 

 
      aaaaaa a aaaaaa a a a a a aaaaaa 

 

4. Quadratic factors:  For each factor of the form                            

(ax2 + bx + c)n, the partial fraction decomposition must 

include the following sum of n fractions. 

 
      aaaaaa a aaaaaa a a a a a aaaaaa 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
concept of a partial 
fraction decomposition 
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II.  Linear Factors  (Pages 556−557) 
 
To find the basic equation of a partial fraction  

decomposition,             aaaaaa   aa aaaa aaaa aa aaa aaaaaaaa aaa 

aaa aaaaaaa aaaaaaaa              aaaaaaaaaaaaa aa aaa aaaaa aaaaaa 

aaaaaaaaaaaa 

 
After finding the basic equation,                 aaa aaa aaaaaaaaaa aa 

aaaaaaaaaa aaaaaa aaa a aa aaaaaa aaaaaaaaa aa a aaa aa aaaaaaa 

aaaa aaaaaaaa aa aaaa aaa aaa aa aaa aaaa aaaaaaaaaa aaaaaa aaa 

aaa aaaa aaaa aaaa aaaa aaaaaaa aaaaa aa aaaa                           a. 

 
Example 1: Write the form of the partial fraction 

decomposition for 
128

4
2 +−

−
xx

x . 

 aaaa a aa a aaaa a aa 
 
Example 2: Write the form of the partial fraction 

decomposition for 
33

12
23 −+−
+

xxx
x . 

 aaaa a aa a aaa a aaaaaa a aa 
 
Example 3: Solve the basic equation 

)3()1(35 ++−=+ xBxAx  for A and B. 
 a a aa a a a 
 
 
III.  Quadratic Factors  (Pages 558−560) 
 
Guidelines for Solving the Basic Equation 
List two guidelines for solving basic equations that involve 
linear factors. 
 
 
 
 
List four guidelines for solving basic equations that involve quadratic factors. 
 
 aaaaa aaa aaaaaa aa aaaaaa aaaaaaaaaaa 

Homework Assignment 
Page(s) 
Exercises 

What you should learn 
How to use partial 
fraction decomposition 
with linear factors to 
integrate rational 
functions 

What you should learn 
How to use partial 
fraction decomposition 
with quadratic factors to 
integrate rational 
functions 
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Section 8.6 Integration by Tables and Other Integration 
  Techniques 
 
Objective: In this lesson you learned how to evaluate an indefinite 

integral using a table of integrals and reduction 
formulas. 

 
I.  Integration by Tables  (Pages 563−564) 
 
Integration by tables is the procedure of integrating by means of  

        a aaaa aaaa aa aaaaaaaa aaa aaaaaaaa                                      . 

 
Integration by tables requires                 aaaaaaaaaaaa aaaaaaa 

aaa aaaaaaaa aaa aaaaa aaaaaaaa aaaaaaaa                                   . 

 
A computer algebra system consists, in part, of a database of 

integration tables. The primary difference between using a 

computer algebra system and using a table of integrals is      aaaa 

aaaa a aaaaaaaa aaaaaaa aaaaaaa aaa aaaaaaaa aaaaaaaa   aaaaaaa 

aaa aaaaaaaa aa aaaa a aaaa aaaa a aaaaa aa aaaaaaaaaa  aaa aaaa 

aa aaa aaaaaaaaa aaaaaaaa                                                        . 

 
Example 1: Use the integration table in Appendix B to identify 

an integration formula that could be used to find 

3
x dx

x−∫ , and identify the substitutions you 

would use. 
 aaa aaa aaaaaaa a aaaa a aaa aa aaaa a a aa a a aa 

aaa a a aaa 
 
 
 
 
 
Example 2: Use the integration table in Appendix B to identify 

an integration formula that could be used to find 
53 lnx x dx∫ , and identify the substitutions you 

would use. 
 aaa aaa aaaaaaa a aa aa a aa  aaaa a a aa aaa a a aa 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to evaluate an 
indefinite integral using a 
table of integrals 
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II.  Reduction Formulas  (Page 565) 
 
An integration table formula of the form 

( ) ( ) ( )f x dx g x h x dx= +∫ ∫ , in which the right side of the 

formula contains an integral, is called a                         aaaaaaaaa 

aaaaaaa                  because they                     aaaaaa aaa aaaaaaaa 

aaaaaaaa aa aaa aaa aa a aaaaaaaa aaa a aaaaaaa aaaaaaaa        . 

 
 
III.  Rational Functions of Sine and Cosine  (Page 566) 
 
If you are unable to find an integral in the integration tables that 
involves a rational expression of sin x and cos x, try using the 
following special substitution to convert the trigonometric 
expression to a standard rational expression. 
 
The substitution 
 
u =        aaaa aa a aa a aaa aa         =        aaa aaaaa       . 
 
yields 
 
cos x =                 aa a aaaaaa a aaa               , 
 
sin x =                 aaaaa a aaa                     , 
 
and  dx =                aa aaaaaa a aaa                  . 
 
 
 
 
 

What you should learn 
How to evaluate an 
indefinite integral using 
reduction formulas 

What you should learn 
How to evaluate an 
indefinite integral 
involving rational 
functions of sine and 
cosine 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 8.7 Indeterminate Forms and L’Hôpital’s Rule 
 
Objective: In this lesson you learned how to apply L’Hôpital’s Rule 

to evaluate a limit. 
 
I.  Indeterminate Forms  (Page 569) 
 
The forms 0/0 and ∞/∞ are called          aaaaaaaaaaaa        because 

they                        aa aaa aaaaaaaaa aaaa a aaaaa aaaaaaa aaa aaaa 

aaaaaaaa aaaa aaa aaaaa aaa aa aa aaaa aaa                                     . 

 
Occasionally an indeterminate form may be evaluated by 

                      aaaaaaaaa aaa aaaaaaaaaa aa aaaaa aaaaaaa aaaaaaa 

aaaaaaaaaa                           . However, not all indeterminate 

forms can be evaluated in this manner. This is often true when 

                aaaa aaaaaaaaa aaa aaaaaaaaaaaa aaaaaaaaa              are 

involved. 

 
 
II.  L’Hôpital’s Rule  (Pages 570−575) 
 
The Extended Mean Value Theorem states that if f and g are 

differentiable on an open interval (a, b) and continuous on [a, b] 

such that ( ) 0g x′ ≠  for any x in (a, b), then there exists a point c 

in (a, b) such that ( )
( )

f c
g c

′
=

′
        aaaaa a aaaaaaa a aaaaa             . 

 
Let f and g be functions that are differentiable on an open 

interval (a, b) containing c, except possibly at c itself. Assume 

that ( ) 0g x′ ≠  for all x in (a, b), except possibly at c itself. 

L’Hôpital’s Rule states that if the limit of f(x)/g(x) as x 

approaches c produces the indeterminate form 0/0, then 

( )lim lim
( )x c x c

f x
g x→ →

=               a aaaaaaaaaa                  , provided the 

limit on the right exists (or is infinite). This result also applies if 

the limit of f(x)/g(x) as x approaches c produces any one of the 

indeterminate forms        aaaa aaaaaaa aaaaaaa aa aaaaaaaaa      . 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to recognize limits 
that produce 
indeterminate forms 

What you should learn 
How to apply L’Hôpital’s 
Rule to evaluate a limit 
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This theorem states that under certain conditions the limit of the 

quotient f(x)/g(x) is determined by                             aaa aaaaa aa 

aaa aaaaaaaa aa aaa aaaaaaaaaaa a aaaaaaaaaa                           . 

 

Example 1: Evaluate 20

1 coslim
2 3x

x
x x→

−
−

. 

 a 
 
 
 
 
 
 
 
 
 
 

Example 2: Evaluate 
2

0

3lim
4 ( / 4) 2x

x
x x→

−
+ − −

. 

 aa 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 8.8 Improper Integrals 
 
Objective: In this lesson you learned how to evaluate an improper 

integral. 
 
 
I.  Improper Integrals with Infinite Limits of Integration 
     (Pages 580−583) 
 
List two properties that make an integral an improper integral. 
 
1.   aaa aa aaaa aa aaa aaaaaa aa aaaaaaaaaaa aaa aaaaaaaaa 
 
2.   a aaa a aaaaaa aaaaaa aa aaaaaaaa aaaaaaaaaaaaa aa aaa aaaaaaaa aaa aaa 
 
If an integrand has an infinite discontinuity, then                     aa 

aaaaaaaaaa aaaaaaaa aaaaaaaaa aa aaa aaaaaaaa aa aaaaaaaa       . 

 
Complete the following statements about improper integrals 
having infinite limits of integration. 
 
1.   If f is continuous on the interval [a, ∞), then  

 ( )
a

f x dx
∞

∫ =              aaa  aa
a aaaa aa                           

 
2.   If f is continuous on the interval (−∞, b], then  

 ( )
b

f x dx
−∞∫ =              aaa   aa

a aaaa aa                           

 
3.   If f is continuous on the interval (−∞,∞), then  

 ( )f x dx
∞

−∞∫ =    aaa
a aaaa aa a aa

a aaaa aa a aaaaa a aa aaa aaaa aaaaaa 

 
In the first two cases, if the limit exists, then the improper 

integral            aaaaaaaaa             ; otherwise, the improper 

integral           aaaaaaaa            . In the third case, the integral on 

the left will diverge if                            aaaaaa aaa aa aaa 

aaaaaaaa aaaaaaaaa aa aaa aaaaa aaaaaaaa                  . 

 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to evaluate an 
improper integral that has 
an infinite limit of 
integration 
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II.  Improper Integrals with Infinite Discontinuities 
       (Pages 583−586) 
 
Complete the following statements about improper integrals 
having infinite discontinuities at or between the limits of 
integration. 
 

1. If f is continuous on the interval [a, b) and has an infinite 
discontinuity at b, then 

 ( )
b

a
f x dx∫ =              aaa  aa

a aaaa aa                           

 
2. If f is continuous on the interval (a, b] and has an infinite 

discontinuity at a, then 

 ( )
b

a
f x dx∫ =              aaa  aa

a aaaa aa                           

 
3. If f is continuous on the interval [a, b], except for some c 

in (a, b) at which f has an infinite discontinuity, then 

 ( )
b

a
f x dx∫ =            aa

a aaaa aa a aa
a aaaa aa                 

 
In the first two cases, if the limit exists, then the improper 

integral            aaaaaaaaa             ; otherwise, the improper 

integral           aaaaaaaa            . In the third case, the improper 

integral on the left diverges if               aaaaaa aaa aa aaa 

aaaaaaaa aaaaaaaaa aa aaa aaaaa aaaaaaaa                  . 

 
 
 
 

What you should learn 
How to evaluate an 
improper integral that has 
an infinite discontinuity 

Homework Assignment 
 
Page(s) 
 
Exercises 



Larson/Edwards   Calculus 9e   Notetaking Guide 
Copyright © Cengage Learning. All rights reserved.   161 

Chapter 9 Infinite Series 
 
Section 9.1 Sequences 
 
Objective: In this lesson you learned how to determine whether a 

sequence converges or diverges. 
 
 
I.  Sequences  (Page 596) 
 
A sequence { }na  is a function whose domain is          aaa aaa aa 

aaaaaaaa aaaaaaaa                            . The numbers a1, a2, a3, . . . , 

an, . . . are the           aaaaa           of the sequence. The number an 

is the               aaa aaaa                  of the sequence, and the entire 

sequence is denoted by            aaaa             . 

 
Example 1: Find the first four terms of the sequence defined 

by 2 4na n= −  
aaaa aa aa aa 
 
 
 
 
 
 
 
II.  Limit of a Sequence  (Pages 597−600) 
 
If a sequence converges, its terms             aaaaaaaa a aaaaaaaa 

aaaaa                   .  

 
Let L be a real number. The limit of a sequence {an} is L, written 

as lim nn
a L

→∞
=  if for each 0ε > , there exists M > 0 such that  

                    aaa a aa a a aaaaaaaa a a a                    . If the limit L 

of a sequence exists, then the sequence          aaaaaaaaa aa a       . 

If the limit of a sequence does not exist, then the sequence  

                   aaaaaaaa                    . 

 
If a sequence {an} agrees with a function f at every positive 

integer, and if f(x) approaches a limit L as x→∞, the sequence 

must               aaaaaaaa aa aaa aaaa aaaaa a                  . 

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
How to list the terms of a 
sequence 

What you should learn 
How to determine 
whether a sequence 
converges or diverges 
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Example 2: Find the limit of each sequence (if it exists) as n 
approaches infinity. 

 a.  2 4na n= −   b.  
2

2

2
3n

na
n n

=
−

 

aaa  aaaaaaaaaaaa  aa 
 
 
Complete the following properties of limits of sequences. Let 
lim nn

a L
→∞

=  and lim nn
b K

→∞
= . 

 
1.  lim( )n nn

a b
→∞

± =             a a a            a 

 
2.  lim nn

ca
→∞

=             aaa a aa aaa aaaa aaaaaa                  a 

 
3.  lim( )n nn

a b
→∞

=              aa              a 

 

4.  lim n

n
n

a
b→∞

=              aaaa aa a a aaa a a a              a 

 
If n is a positive integer, then n factorial is defined as 

             aa a a a a a a a a a a a aa a aa a a             a. As a special 

case, zero factorial is defined as 0! =             a            . 

 
Another useful limit theorem that can be rewritten for sequences 
is the Squeeze Theorem, which states that if lim limn nn n

a L b
→∞ →∞

= =  

and there exists an integer N such that n n na c b≤ ≤  for all n > N, 
then lim nn

c
→∞

=                 a                . 

 
For the sequence {an}, if lim 0nn

a
→∞

=  then lim nn
a

→∞
=          a          . 

 
 
III.  Pattern Recognition for Sequences  (Pages 600−601) 
 
Example 3: Determine an nth term for the sequence 

 0, 1
4

, 2
9

− , 3
16

, 4
25

− , . . . 

aaaaaa aa a aaaaa 
 
 
 
 
 
 
 

What you should learn 
How to write a formula 
for the nth term of 
sequence 
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IV.  Monotonic Sequences and Bounded Sequences   
        (Pages 602−603) 
 
A sequence {an} is monotonic if its terms are        aaaaaaaaaaaaa 

aa a aa a aa a a a aa a a                         or if its terms are 

aaaaaaaaaaaaa  aa a aa a aa a a a aa a a                                    . 

 
A sequence {an} is                  aaaaa                            if there is a 

real number M such that na M≤  for all n. The number M is 

called              aa aaaaa aaaaa               of the sequence. A 

sequence {an} is            aaaaaaa aaaaa              if there is a real 

number N such that nN a≤  for all n. The number N is called  

             a aaaaa aaaaa               of the sequence. A sequence {an} 

is                 aaaaaaa                   if it is bounded above and 

bounded below. 

 
If a sequence {an} is            aaaaaaa aaa aaaaaa     aaa             , 

then it converges. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to use properties of 
monotonic sequences and 
bounded sequences 



164  Chapter 9    Infinite Series 

 Larson/Edwards   Calculus 9e   Notetaking Guide 
  Copyright © Cengage Learning. All rights reserved. 

Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 9.2 Series and Convergence 
 
Objective: In this lesson you learned how to determine whether an 

infinite series converges or diverges. 
 
I.  Infinite Series  (Pages 608−610) 
 
If {an} is an infinite sequence, then the infinite summation 

1 2 3
1

n n
n

a a a a a
∞

=

= + + + + +∑ L L  is called an                   aaaaaa 

aaaaaa                   . The numbers a1, a2, a3, and so on, are the 

             aaaaa            of the series. The sequence of partial sums 

of the series is denoted by           aa a aaa aa a aa a aaa                           

aa a aa a aa a aaa a a a                                           . 

 
If the sequence of partial sums { }nS  converges to S, then the 

infinite series               aaaaaaaaa            to S. This limit is 

denoted by 
1

lim n nn
n

S a S
∞

→∞
=

= =∑ , and S is called the            aaa aa 

aaa aaaaaa          . If the limit of the sequence of partial sums 

{ }nS  does not exist, then the series             aaaaaaaa             . 

 
A telescoping series is of the form 1 2 2 3 3 4 4 5( ) ( ) ( ) ( )b b b b b b b b− + − + − + − +L , 

where b2 is cancelled                    aa aaa aaaaaa aaaaa a aa aaaaaaaa aa aaa aaaaa 

aaaaa aaa aa aa                          . Because the nth partial sum of this series is 

1 1n nS b b += − , it follows that a telescoping series will converge if and only if bn  

              aaaaaaaaaa a aaaaaa aaaaaa aa aaa             . Moreover, if the series 

converges, its sum is                 a a a a aaa a            . 

 
 
II.  Geometric Series  (Pages 610−612) 
 
If a is a nonzero real number, then the infinite series 

2

0

n n

n

ar a ar ar ar
∞

=

= + + + + +∑ L L  is called a        aaaaaaaaa 

aaaaaa                    with ratio r. 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
definition of a convergent 
infinite series 

What you should learn 
How to use properties of 
infinite geometric series 



166 Chapter 9     Infinite Series 

 Larson/Edwards   Calculus 9e   Notetaking Guide 
  Copyright © Cengage Learning. All rights reserved. 

An infinite geometric series given by 
0

n

n

ar
∞

=
∑  diverges if  

            a a a a a                  . If           a a a a a a a            , then the 

series converges to the sum 
0 1

n

n

aar
r

∞

=

=
−∑ . 

 

Given the convergent infinite series 
1

n
n

a A
∞

=

=∑  and 
1

n
n

b B
∞

=

=∑  

and real number c,  

1
n

n

ca
∞

=

=∑                  aa                   a 

 

1

( )n n
n

a b
∞

=

+ =∑                    a a a                   a 

 

1

( )n n
n

a b
∞

=

− =∑                    a a a                   a 

 
 
III.  nth-Term Test for Divergence  (Pages 612−613) 
 
The nth Term Test for Divergence states that if lim 0nn

a
→∞

≠ , 

then the series 
1

n
n

a
∞

=
∑               aaaaaaaa             . 

 

Example 1: Determine whether the series 
2

2
1

2
3 1n

n
n

∞

= −∑  

diverges. 
aaaaa aaa aaaaaa aaaaaaaaa 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to use the nth-Term 
Test for Divergence of an 
infinite series 
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Section 9.3 The Integral Test and p-Series 
 
Objective: In this lesson you learned how to determine whether an 

infinite series converges or diverges. 
 
 
 
 
 
 
 
 
 
I.  The Integral Test  (Pages 619−620) 
 
The Integral Test states that if f is positive, continuous and 

decreasing for 1x ≥  and ( )na f n= , then 
1

n
n

a
∞

=
∑  and 

1
( )f x dx

∞

∫  either               aaaa aaaaaaaa aa aaaa aaaaaaa           . 

 
Remember that the convergence or divergences of na∑  is not 

affected by deleting                aaa aaaaa a aaaaa                   . 

Similarly, if the conditions for the Integral Test are satisfied for 

all               a a a a a             , you can simply use the integral 

( )
N

f x dx
∞

∫  to test              aaa aaaaaaaaaaa aa aaaaaaaaaa          . 

 
 
II.  p-Series and Harmonic Series  (Pages 621−622) 
 
Let p be a positive constant. An infinite series of the form 

1

1 1 1 1
1 2 3p p p p

n n

∞

=

= + + +∑ L  is called a              aaaaaaaa             . 

If p = 1, then the series 
1

1 1 11
2 3n n

∞

=

= + + +∑ L  is called the 

             aaaaaaaa aaaaaa                     . 

 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use the Integral 
Test to determine 
whether an indefinite 
series converges or 
diverges 

What you should learn 
How to use properties of 
p-series and harmonic 
series 

Important Vocabulary  Define each term or concept. 
 
General harmonic series  a aaaaaaaa aaaaaa aa aaa aaaa  aaaaaa a aaa 



168 Chapter 9     Infinite Series 

 Larson/Edwards   Calculus 9e   Notetaking Guide 
  Copyright © Cengage Learning. All rights reserved. 

The Test for Convergence of a p-Series states that the p-series 

1

1 1 1 1 1
1 2 3 4p p p p p

n n

∞

=

= + + + +∑ L  diverges if         a a a a a         , 

or converges if             a a a               .  

 

Example 1: Determine whether the series 2

1n

n
∞

−

=
∑  converges 

or diverges. 
aaaaaaaaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 9.4 Comparison of Series 
 
Objective: In this lesson you learned how to determine whether an 

infinite series converges or diverges. 
 
 
I.  Direct Comparison Test  (Pages 626−627) 
 
This section presents two additional tests for positive-term series 

which greatly expand the variety of series you are able to test for 

convergence or divergence; they allow you to                 aaaaaaa 

a aaaaaa aaaaaa aaaaaaaaaaa aaaaa aaaa a aaaaaaa aaaaaa aaaaa 

aaaaaaaaaaa aa aaaaaaaaaa aa aaaaa                                   . 

 
Let 0 n na b< ≤  for all n. The Direct Comparison Test states that  

if 
1

n
n

b
∞

=
∑         aaaaaaaaa          , then 

1
n

n

a
∞

=
∑         aaaaaaaaa         . 

If 
1

n
n

a
∞

=
∑         aaaaaaaa            , then 

1
n

n

b
∞

=
∑           aaaaaaa          . 

 
Use your own words to give an interpretation of this test. 
 
aaaaaaaaaaa aaa aaaa aaaa aaa aaaaaaaaa aaaaa aaa aaa aaaaaa 
aaaa aaaaaaaaaaa aaaaaa aa aaa aaaaaaaa aaaaaa aaaaaaaaaa aaaa 
aaa aaaaaaaaa aaaaaa aaaa aaaa aaaaaaaaa aa aaa aaaaaaaaa 
aaaaaa aaaaaaaaaa aaaa aaa aaaaaaaa aaaaaa aaaa aaaa aaaaaaaaa 
 
 
 
 
II.  Limit Comparison Test  (Pages 628−629) 
 
Suppose that 0na >  and 0nb > . The Limit Comparison Test 

states that if lim n

n
n

a L
b→∞

⎛ ⎞
=⎜ ⎟

⎝ ⎠
, where L is finite and positive, then 

the two series na∑  and nb∑  either             aaaa aaaaaaaa aa 

aaaa aaaaaaa                                           . 

 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use the Direct 
Comparison Test to 
determine whether a 
series converges or 
diverges 

What you should learn 
How to use the Limit 
Comparison Test to 
determine whether a 
series converges or 
diverges 
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Describe circumstances under which you might apply the Limit 
Comparison Test. 
 
aaaa a aaaaa aaaaaa aaaaaaa aaaaaaaaa a aaaaaaaa aa a aaaaaaaaa 
aaaaaaa aaa aaa aaaaaa aaaaaaaaa aaa aaaaaaaaaaaa aaaaaaaaaa 
aaaaaaaaa aa aaaaa aaa aaaaaa aaaaaaaaaa aaaaaa 
 
 
 
The Limit Comparison Test works well for comparing a “messy” 

algebraic series with a p-series. In choosing an appropriate                   

p-series, you must choose one with                    aa aaa aaaa aa aa 

aaaa aaaaaaaaa aa aaa aaa aaaa aa aaa aaaaa aaaaa                      . 

In other words, when choosing a series for comparison, you can 

disregard all but                            aaa aaaaaaa aaaaaa aa a aa aaaa 

aaa aaaaaaaaa aaa aaa aaaaaaaaaaa                           . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 9.5 Alternating Series 
 
Objective: In this lesson you learned how to determine whether an 

infinite series converges or diverges. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I.  Alternating Series  (Pages 633−634) 
 
Alternating series occur in two ways:             aaaaaa aaa aaa aaaa 

aaa aaaaaaaa aa aaa aaaaaaa aaa aaaaaaaa                            . 

 
Let an > 0. The Alternating Series Test states that the 

alternating series 
1

( 1)n
n

n

a
∞

=

−∑  and 1

1

( 1)n
n

n

a
∞

+

=

−∑  converge if the 

following two conditions are met: 
 
1.  aaa aa a a 
 
 
2.  aaaa a aaa aaa aaa a 
 
 

Example 1: Determine whether the series 2
1

( 1)n

n n

∞

=

−∑  converges 

or diverges. 
aaaaaaaaaa 
 
 
 
II.  Alternating Series Remainder  (Page 635) 
 
For a convergent alternating series, the partial sum SN can be 

              a aaaaaa aaaaaaaaaaaaa aaa aaa aaa a aa aaa aaaa          . 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use the 
Alternating Series Test to 
determine whether an 
infinite series converges 

What you should learn 
How to use the 
Alternating Series 
Remainder to 
approximate the sum of 
an alternating series

Important Vocabulary  Define each term or concept. 
 
Alternating series  a aaaaaa aaaa aaaaaaaa aaaa aaaaaaaa aaa aaaaaaaa aaaaaa aaaaa 
aaaaaaaaa aa aaaaa 
 
Absolutely convergent  aaa aaaaaa a aa aa aaaaaaaaaa aaaaaaaaaa aa a aaaa 
aaaaaaaaaa 
 
Conditionally convergent  aaa aaaaaa a aa aa aaaaaaaaaaaaa aaaaaaaaaa aa a aa 
aaaaaaaaa aaa a aaaa aaaaaaaaa 
 

aaaa 



172 Chapter 9     Infinite Series 

 Larson/Edwards   Calculus 9e   Notetaking Guide 
  Copyright © Cengage Learning. All rights reserved. 

If a convergent alternating series satisfies the condition 

1n na a+ ≤ , then the absolute value of the remainder RN involved 

in approximating the sum S by SN is            aaaa aaaa aaa aaaaa 

aaa aaa aaaaa aaaaaaaaa aaaa                 . That is, 

1N N NS S R a +− = ≤ . 

 
 
III.  Absolute and Conditional Convergence  (Pages 636−637) 
 
If the series Σ |an| converges, then the series Σ an                     aaa 

aaaaaaaaa                       . 

 

Example 2: Is the series 2
1

( 1)n

n n

∞

=

−∑  absolutely or conditionally 

convergent? 
aaaaaaaaaaa aaaaaaaaaa 
 
 
 
 
IV.  Rearrangement of Series  (Pages 637−638) 
 
The terms of an infinite series can be rearranged without 

changing the value of the sum of the terms only if         aaa aaaaa 

aa aaaaaaaaaa aaaaaaaaaa                                   . If the series is  

              aaaaaaaaaaaaa aaaaaaaaaa               , then it is possible 

that rearranging the terms of the series can change the value of 

the sum. 

 
 
 
 
 
 
 
 
 Homework Assignment 

 
Page(s) 
 
Exercises 

What you should learn 
How to classify a 
convergent series as 
absolutely or 
conditionally convergent 

What you should learn 
How to rearrange an 
infinite series to obtain a 
different sum 
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Section 9.6 The Ratio and Root Tests 
 
Objective: In this lesson you learned how to determine whether an 

infinite series converges or diverges. 
 
 
I.  The Ratio Test  (Pages 641−643) 
 

Let 
1

n
n

a
∞

=
∑  be an infinite series with nonzero terms. The Ratio 

Test states that: 

1.  The series converges absolutely if 1lim n

n
n

a
a

+

→∞
                 a a                    . 

2.  The series diverges if 1lim n

n
n

a
a

+

→∞
                 a a                     or 1lim n

n
n

a
a

+

→∞
             a a                 . 

3.  The test is inconclusive if 1lim n

n
n

a
a

+

→∞
                 a a                   . 

 
Example 1: Use the Ratio Test to determine whether the series 

0

4
!

n

n n

∞

=
∑  converges or diverges. 

aaaaaaaaaa 
 
 
The Ratio Test is particularly useful for series that         aaaaaaaa 

aaaaaaa                     , such as those that involve          aaaaaaaaaa 

aa aaaaaaaaaaaa                  . 

 
 
II.  The Root Test  (Page 644) 
 
The Root Test for convergence or divergence of series works 

especially well for series involving                aaa aaaaaa              . 

 

Let 
1

n
n

a
∞

=
∑  be an infinite series. The Root Test states that: 

1.  The series converges absolutely if lim n
nn

a
→∞

                 a a                    . 

2.  The series diverges if lim n
nn

a
→∞

                 a a                     or lim n
nn

a
→∞

             a a                 . 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use the Ratio 
Test to determine 
whether a series 
converges or diverges 

What you should learn 
How to use the Root Test 
to determine whether a 
series converges or 
diverges 
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3.  The test is inconclusive if lim n
nn

a
→∞

                 a a                   . 

 
 
III.  Strategies for Testing Series  (Pages 645−646) 
 
List four guidelines for testing a series for convergence or 
divergence. 
 
1.  aaaa aaa aaa aaaa aaaaaaaa aa aa aaaa aaa aaaaaa aaaaaaaaa 
 
2.  aa aaa aaaaaa aaa aa aaa aaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaa 
aaaaaaaaaaaa aa aaaaaaaaaaaa 
 
3.  aaa aaa aaaaaaaa aaaaa aaa aaaa aaaaa aa aaa aaaaa aaaa aa 
aaaaaaaa 
 
4.  aaa aaa aaaaaa aa aaaaaaaa aaaaaaaaa aa aaa aa aaa aaaaaaa 
aaaaaa 
 
 
Complete the following selected tests for series. 
 
Test  Series  Converges  Diverges  
 

nth-Term  
1

n
n

a
∞

=
∑   aa aaaa   aaa aa a a 

 

aaaaaaaaaa 
0

n

n

ar
∞

=
∑   a a a a a  a a a a a 

 

aaaaaaaa 
1

1
p

n n

∞

=
∑   a a a   a a a a a 

 

aaaaaaaaaaa 1
1

( )n n
n

b b
∞

+
=

−∑  aaa aa a aaaaa aaaa 

 

Ratio 
1

n
n

a
∞

=
∑              aaa a aaaa a aa a a a aaa a aaaa a aa a a a  aa  aaa a aaaa a aa a a a 

 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to review the tests 
for convergence and 
divergence of an infinite 
series 

a a aa 

a a aa a a aa a a aa 

a a aa 
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Section 9.7 Taylor Polynomials and Approximations 
 
Objective: In this lesson you learned how to find Taylor or 

Maclaurin polynomial approximations of elementary 
functions. 

 
I.  Polynomial Approximations of Elementary Functions 
     (Pages 650−651) 
 
To find a polynomial function P that approximates another 

function f,                                     aaaaa aa aaaaaaaa a aaaaaa a aa 

aaaaaaa aa a aa aaaaa a aaa a aaaa aaa aaaa aaaaaa aaaa aaa aaaa 

a aaaa                                    . The approximating polynomial is 

said to be            aaaaaaaa aaaaa a aaaa aa a                           . 

 
 
II.  Taylor and Maclaurin Polynomials  (Pages 652−655) 
 
If f has n derivatives at c, then the polynomial 

( )
2( ) ( )( ) ( ) ( )( ) ( ) ( )

2! !

n
n

n
f c f cP x f c f c x c x c x c

n
′′′= + − + − + + −L  

is called the                aaa aaaaaa aaaaaaaaa aaa a aa a                 . 

If c = 0, then 
( )

2(0) (0)( ) (0) (0)
2! !

n
n

n
f fP x f f x x x

n
′′′= + + + +L  

is also called the                aaa aaaaaaaaa aaaaaaaaaa aaa a         . 

 
The accuracy of a Taylor or Maclaurin polynomial 

approximation is usually better at x-values                     aaaaa aa 

a aaaa aa aaaaaaaa aaa aaaa a                  . The approximation is 

usually better for higher-degree Taylor or Maclaurin 

polynomials than                    aaa aaaaa aa aaaa aaaaaa               . 

 
 
III.  Remainder of a Taylor Polynomial  (Pages 656−657) 
 
If a function f is differentiable through order n + 1 in an interval I 

containing c, then for each x in I, Taylor’s Theorem states that 

there exists z between x and c such that f(x) =          a aaaaaaaaaa 

aaaaaa aaaaaaaaaa a a aa aa a aaaa                                              , 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find polynomial 
approximations of 
elementary functions and 
compare them with the 
elementary functions 

What you should learn 
How to find Taylor and 
Maclaurin polynomial 
approximations of 
elementary functions 

What you should learn 
How to use the remainder 
of a Taylor polynomial 
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where Rn(x) is given by 
( 1)

1( )( ) ( )
( 1)!

n
n

n
f zR x x c
n

+
+= −

+
. The value 

Rn(x) is called the              aaaaaaaaa aa aaaa                    . 

 
The practical application of this theorem lies not in calculating 

Rn(x), but in                 aaaaaaa aaaaaa aaa aaaaaaaaa aaaa aaaaa 

aaa aaa aaaa aa aaaa aaa aaaaa aaa aaaaaaaaa aaaa aa                 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 9.8 Power Series 
 
Objective: In this lesson you learned how to find the radius and 

interval of convergence of power series and how to 
differentiate and integrate power series. 

 
I.  Power Series  (Pages 661−662) 
 
If x is a variable, then an infinite series of the form 

2 3
0 1 2 3

0

n n
n n

n

a x a a x a x a x a x
∞

=

= + + + + + +∑ L L  is called a 

                    aaaaa aaaaaa                       . More generally, an 

infinite series of the form 

2
0 1 2

0

( ) ( ) ( ) ( )n n
n n

n

a x c a a x c a x c a x c
∞

=

− = + − + − + + − +∑ L L  

is called a                   aaaaa aaaaaa aaaaaaaa aa a                 , 

where c is a constant. 

 
 
II.  Radius and Interval of Convergence  (Pages 662−663) 
 
For a power series centered at c, precisely one of the following is 
true. 
 
1.  The series converges only at             a                . 

2.  There exists a real number R > 0 such that the series 

converges absolutely for              a a a a a a a            , and 

diverges for              a a a a a a a            . 

3.  The series converges absolutely for                aa a                   . 

 
The number R is the                aaaaaa aa aaaaaaaaaaa                 of 

the power series. If the series converges only at c, the radius of 

convergence is           a a a              , and if the series converges 

for all x, the radius of convergence is                 a a a                . 

The set of all values of x for which the power series converges is 

the                      aaaaaaaa aa aaaaaaaaaaa                   of the 

power series. 

 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
definition of a power 
series 

What you should learn 
How to find the radius 
and interval of 
convergence of a power 
series 
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III.  Endpoint Convergence  (Pages 664−665) 
 
For a power series whose radius of convergence is a finite 

number R, each endpoint of the interval of convergence must be  

              aaaaaa aaaaaaaaaa aaa aaaaaaaaaaa aa aaaaaaaa             . 

 
 
IV.  Differentiation and Integration of Power Series 
        (Pages 666−667) 
 
If the function given by 

          0
2 3

0 1 2 3

( ) ( )

( ) ( ) ( )

n
n

n

f x a x c

a a x c a x c a x c

∞

=

= −

= + − + − + − +

∑
L

 

has a radius of convergence of R > 0, then, on the interval  

(c − R, c + R), f is                    aaaaaaaaaaaaaa aaa aaaaaaaaa 

aaaaaaaaaa              . Moreover, the derivative and antiderivative 

of f are as follows. 

1.  1

1

( ) ( )n
n

n

f x na x c
∞

−

=

′ = −∑  

               =               aa a aaaaa a aa a aaaaa a aaa a a a a 

2.  
1

0

( )( )
1

n

n
n

x cf x dx C a
n

∞ +

=

−= +
+∑∫  

                      =     a a aaaa a aa a aaaa a aaa a aaaa a aaaaa a a a a 

 

The radius of convergence of the series obtained by 

differentiating or integrating a power series is             aaa aaaa aa 

aaaa aa aaa aaaaaaaa aaaaa aaaaaa                            . The interval 

of convergence, however, may differ as a result of        aaa aaaaa 

aa aaa aaaaaaaaa                                                . 

 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to determine the 
endpoint convergence of 
a power series 

What you should learn 
How to differentiate and 
integrate a power series 
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Section 9.9 Representation of Functions by Power Series 
 
Objective: In this lesson you learned how to represent functions by 

power series. 
 
I.  Geometric Power Series  (Pages 671−672) 
 
Describe two ways for finding a geometric power series. 

 
aaa aaa aa aaaa a aaaaa aaaaaa aaa a aaaaaaaa aaaaaaaa aaaa aa 
aa aaaaa aaaa aa aaa aaaa aaaa a aaa aaaaaaa aaa aa aaaaaaaaa a 
aaaaa aaaaaa aaa a aaaaaaaa aaaaaaaa aa aa aaa aaaa aaaaaaaaaa 
 
 
 
 
II.  Operations with Power Series  (Pages 673−675) 
 
Let ( ) n

nf x a x=∑  and ( ) n
ng x b x=∑ . 

1.  f(kx) = 
0n

∞

=
∑           aaaaaa 

2.  f(xN) = 
0n

∞

=
∑           aaaaa 

3.  f(x) ± g(x) = 
0n

∞

=
∑           aaa a aaaaa 

 
The operations described above can change               aaa aaaaaaa 

aa aaaaaaaaaaa aaa aaa aaaaaaaaa aaaaaa                                     . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find a geometric 
power series that 
represents a function 

What you should learn 
How to construct a power 
series using series 
operations 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 9.10   Taylor and Maclaurin Series 
 
Objective: In this lesson you learned how to find a Taylor or 

Maclaurin series for a function. 
 
I.  Taylor Series and Maclaurin Series  (Pages 678−682) 
 
The Form of a Convergent Power Series 

 
If f is represented by a power series ( ) ( )n

nf x a x c= −∑  for all 

x in an open interval I containing c, then an =        aaaaaaaa          , 

and f(x) =                   aaaa a a aaaaaa a aa a a aaaaaaaaaa a aaa a 

a a a a aaaaaaaaaaaa a aaa a a a a                                       . 

 
The series is called the Taylor series for f(x) at c because       aaa 

aaaaaaaaaaaa aa aaa aaaaa aaaaaa aaa aaaaaaaaa aaa aaaaaaaaaaa 

aa aaa aaaaaa aaaaaaaaaa aaa aaaa aa a                                         . 

 
If a function f has derivatives of all orders at x = c, then the            

series 
( )

0

( ) ( )
!

n
n

n

f c x c
n

∞

=

−∑  =                aaaa a a aaaaaa a aa a a a 

a a aaaaaaaaaaaa a aaa a a a a                                        is called 

the Taylor series for f(x) at c. Moreover, if c = 0, then the series 

is called the                  aaaaaaaaa aaaaaa aaa a                 . 

 
If lim 0nn

R
→∞

=  for all x in the interval I, then the Taylor series for f  

          aaaaaaaaa aaa aaaaaa aaaa              , where 
( )

0

( )( ) ( )
!

n
n

n

f cf x x c
n

∞

=

= −∑ . 

 
 
Complete the list of guidelines for finding a Taylor series. 
 
1.  aaaaaaaaaaaaa aaaa aaaaaaa aaaaa aaa aaaaaaaa aaaa 
aaaaaaaaaa aa aa     aaaaa a aaaaa a aaaaaa a aaaaaaa a a a a 
aaaaaaaa a a a     aaa aa aaaaaaaaa a aaaaaaa aa aaaaa aaaaaaaa 
 
 
2.  aaa aaa aaaaaaaa aaaaaaaaa aa aaa aaaaa aaaa aa aaaa aaa 
aaaaaa aaaaaaaaaaaa aa a aaaaaaaaaaa aaa aaaaaaaaa aaa aaaaaaaa 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find a Taylor or 
Maclaurin series for a 
function 
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aa aaaaaaaaaaa aaa aaa aaaaaaaaa aaaaa aaaaaa aaaa a a aaaaaa a 
aa a    a aaaaaaaaaa a aaa a a a a a aaaaaaaaaaaa a aaa a a a a   
 
 
3.  aaaaaa aaaa aaaaaaaa aa aaaaaaaaaaaa aaaaaaaaa aaaaaaa aa 
aaa aaa aaaaaa aaaaaaaaa aa aaaaa 
 
 
 
 
 
II.  Binomial Series  (Page 683) 
 
The binomial series for a function of the form ( ) (1 )kf x x= +  is 
 
a a aa a aaaa a aaaaaaa a a a a a aaaa a aa a a a aa a a a aaaaaaaa a a a aa 
 
 
III.  Deriving Taylor Series from a Basic List 
        (Pages 684−686) 
 
Because direct computation of Taylor or Maclaurin coefficients 

can be tedious, the most practical way to find a Taylor or 

Maclaurin series is to develop power series for a basic list of 

elementary functions. From this list, you can determine power 

series for other functions by the operations of                 aaaaaaaa 

aaaaaaaaaaaa aaaaaaaaaaaaaaa aaaaaaaaa         aaaaaaaaaaaaaaaa 

aaaaaaaaaaaa aa aaaaaaaaaaa                                     with known 

power series. 

 
List power series for the following elementary functions and 
give the interval of convergence for each. 
 
 
1
x

=   aaa aaaa aaa aa aaaa 

 
1

1 x
=

+
  aaa aaaa aaa aa aaaa 

 
ln x =   aaa aaaa aaa aa aaaa 
 
ex =   aaa aaaa aaa aa aaaa 
 
sin x =   aaa aaaa aaa aa aaaa 
 

What you should learn 
How to find a binomial 
series 

What you should learn 
How to use a basic list of 
Taylor series to find other 
Taylor series 
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cos x =   aaa aaaa aaa aa aaaa 
 
arctan x =   aaa aaaa aaa aa aaaa 
 
arcsin x =   aaa aaaa aaa aa aaaa 
 
(1 + x)k =   aaa aaaa aaa aa aaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Additional notes 
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Homework Assignment 
 
Page(s) 
 
Exercises 
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Chapter 10 Conics, Parametric Equations, 
   And Polar Coordinates 
 
Section 10.1      Conics and Calculus 
 
Objective: In this lesson you learned how to analyze and write an 

equation of a parabola, an ellipse, and a hyperbola. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I.  Conic Sections  (Page 696) 
 
A conic section, or conic, is           aaa aaaaaaaaaaaa aa a aaaaa 

aaa a aaaaaaaaaaaaa aaaa                                   . 

 
Name the four basic conic sections:         aaaaaaa aaaaaaaa 

aaaaaaaaa aaa aaaaaaaaa                                                    . 

 
In the formation of the four basic conics, the intersecting plane 

does not pass through the vertex of the cone. When the plane 

does pass through the vertex, the resulting figure is a(n)  

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
Understand the definition 
of a conic section 

Important Vocabulary  Define each term or concept. 
 
Directrix of a parabola  a aaaaa aaaa aa aaa aaaaa aaaa aaaaa aaaa aaaaa aa a 
aaaaaaaa aa aaa aaaa aaaaaaaa aa aaa aaaaaaaa aaaa aaa aaaaa aa aaa     aa aa aaa 
aaaaaa 
Focus of a parabola  a aaaaa aaaaa aa aaa aaaaa aaaa aaaaa aaaa aaaaa aa a aaaaaaaa 
aa aaa aaaa aaaaaaaa aa aaa aaaaaaaa aaaa aaa aaaaa aa a aaaaa aaaa aa aaa aaaaaa 
Tangent of parabola  a aaaa aa aaaaaaa aa a aaaaaaaa aa a aaaaa aa aaa aaaaaaaa aa 
aaa aaaa aaaaaaaaaaa aaa aaaa aaa aaaaaa aaa aaaaaaaa aa aaa aaaaaa 
Foci of an ellipse  aaaaaaaa aaaaa aaaaaa aa aaa aaaaa aaaa aaaa aaa aaa aa aaa 
aaaaaaaaa aaaa aaaa aaaaa aa aa aaaaaaa aa aaaaaaaaa 
Vertices of an ellipse  aaaaaa aa aaaaaaaaaaaa aa aa aaaaaaa aaa aaa aaaa aaaaaaa aa 
 
Major axis of an ellipse  aaa aaaaa aaaaaaaaaa aaa aaaaaaaa aa aa aaaaaaaa 
 
Center of an ellipse  aaa aaaaaaaa aa aaa aaaaa aaaa aa aa aaaaaaaa 
 
Minor axis of an ellipse  aaa aaaaa aaaaaaaaaaaaa aa aaa aaaaa aaaa aa aaa aaaaaa aa 
aa aaaaaaaa 
Branches of a hyperbola  aaa aaa aaaaaaaaaaaa aaaaa aa aaa aaaaa aa a aaaaaaaaaa 
 
Transverse axis of a hyperbola  aaa aaaa aaaaaaa aaaaaaaaaa aaa aaaaaaaa aa a 
aaaaaaaaaa 
Conjugate axis of a hyperbola  aaa aaaa aaaaaaa aa a aaaaaaaaa aa aaaaaa aa aaaaaaa 
aaa a a aa aaa aaa a a aa aaa aa a aa aa aaa aa a aa aaaa 
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                  aaaaaaaaaa aaaaa                  , such as  

              a aaaaaa a a      aaaa aa a a   aaa aa aaaaaaaaaaaa aaaaa             

aa                                                              . 

 
In this section, each conic is defined as a           aaaaa                of 

points satisfying a certain geometric property. For example, a 

circle is the collection of all points (x, y) that are 

               aaaaaaaaaaa                   from a fixed point (h, k). This 

locus definition easily produces the standard equation of a circle  

      aa a aaa a aa a aaa a a          . 

 
 
II.  Parabolas  (Pages 697−698) 
 
A parabola is                         aaa aaa aa aaa aaaaaa aaa aa aaaa 

aaa aaaaaaaaaaa aaaa a aaaaa aaaa aaaaaa aaa aaaaaaaaa aaa a 

aaaaa aaaaa aaaaaa aaa aa aaaa                                                     . 

 
The midpoint between the focus and the directrix is the  

          aaaaaa           of a parabola. The line passing through the 

focus and the vertex is the            aaaa            of the parabola. 

The standard form of the equation of a parabola with a vertical 

axis having a vertex at (h, k) and directrix y = k − p is  

             aa a aaa a aaaa a aaa   a a a            

The standard form of the equation of a parabola with a horizontal 

axis having a vertex at (h, k) and directrix x = h − p is  

             aa a aaa a aaaa a aaa   a a a            

The focus lies on the axis p units (directed distance) from the 

vertex. The coordinates of the focus are           aaa a  aa          for 

a vertical axis or            aa a aa aa               for a horizontal axis. 

 
Example 1: Find the standard form of the equation of the 

parabola with vertex at the origin and focus (1, 0). 
 
 aa a aa 
 
 
 

What you should learn 
How to analyze and write 
equations of parabolas 
using properties of 
parabolas 
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A focal chord is            a aaaa aaaaaaa aaaa aaaaaa aaaaaaa aaa 

aaaaa aa a aaaaaaaa aaa aaa aaaaaaaaa aa aaa aaaaaaa                 . 

 
The specific focal chord perpendicular to the axis of a parabola 

is called the           aaaaa aaaaaa           . 

 
The reflective property of a parabola states that the tangent line 
to a parabola at a point P makes equal angles with the following 
two lines: 
 
1)  aaa aaaa aaaaaaa aaaaaaa a aaa aaa aaaaa 
 
2)  aaa aaaa aaaaaaa aaaaaaa a aaaaaaaa aa aaa aaaa aa aaa 
aaaaaaaa 
 
 
III.  Ellipses  (Pages 699−702) 
 
An ellipse is                          aaa aaa aa aaa aaaaaa aaa aaa aaa aa 

aa aaaaa aaaaaaaaa aaaa aaa aaaaaaaa aaaaa aa   aaaa aaaaaa aaaa 

aa aaaaaa                                                                                      . 

 
The standard form of the equation of an ellipse with center (h, k) 

and a horizontal major axis of length 2a and a minor axis of 

length 2b, where a > b, is:       aa a aaaaaa a aa a aaaaaa a a 

 
The standard form of the equation of an ellipse with center (h, k) 

and a vertical major axis of length 2a and a minor axis of length 

2b, where a > b, is:             aa a aaaaaa a aa a aaaaaa a a 

 
In both cases, the foci lie on the major axis, c units from the 

center, with c2 =         aa a aa          . 

 
Example 2: Sketch the ellipse given by 100254 22 =+ yx . 
 
 
 
 
 
 
 
 
 

What you should learn 
How to analyze and write 
equations of ellipses 
using properties of 
ellipses 

y
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-3

-1

1

3

5

-5 -3 -1 1 3 5
x
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Let P be a point on an ellipse. The Reflective Property of an 

Ellipse states that              aaa aaaaaaa aaaa aa aaa aaaaaaa aa 

aaaaa a aaaaa aaaaa aaaaaa aaaa aaa aaaaa aaaaaaa a aaa aaa 

aaaa             . 

 
          aaaaaaaaaaaa           measures the ovalness of an ellipse. It 

is given by the ratio e =          aaa           . For an elongated 

ellipse, the value of e is close to           a            . For every 

ellipse, the value of e lies between       a         and       a        . 

 
 
IV.  Hyperbolas  (Pages 703−705) 
 
A hyperbola is                aaa aaa aa aaa aaaaaa aaa aa  aaa aaaaa 

aaa aaaaaaaa aaaaa aa aaa aaaaaaaaaa aaaaaaa aaa aaaaaaaaa aaa 

aaa aaaaaaaa aaaaa aaaa aaaa aa aaaaaaaa                                    . 

 
The line through a hyperbola’s two foci intersects the hyperbola 

at two points called             aaaaaaaa              . 

 
The midpoint of a hyperbola’s transverse axis is the  

              aaaaaa               of the hyperbola. 

 
The standard form of the equation of a hyperbola centered at            

(h, k) and having a horizontal transverse axis is  

      aa a aaaaaa a aa a aaaaaa a a          

The standard form of the equation of a hyperbola centered at     

(h, k) and having a vertical transverse axis is  

      aa a aaaaaa a aa a aaaaaa a a 

The vertices are a units from the center and the foci are c units 

from the center. Moreover, a, b, and c are related by the equation  

            aa a aa a aa            . 

 
The asymptotes of a hyperbola with a horizontal transverse axis 

are      a a a a aaa aa a aa                                                       . 

The asymptotes of a hyperbola with a vertical transverse axis 

are       a a a a aaa aa a aa                                                      . 

What you should learn 
How to analyze and write 
equations of hyperbolas 
using properties of 
hyperbolas 
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Example 3: Sketch the graph of the hyperbola given by 
99 22 =− xy . 

 
 
 
 
 
 
 
 
 
 
 
 
 
The eccentricity of a hyperbola is e =             aaa            , where 

the values of e are         aaaaaaa aaaa a              . 

 
Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y

x
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x
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Section 10.2    Plane Curves and Parametric Equations 
 
Objective: In this lesson you learned how to sketch a curve 

represented by parametric equations. 
 
I.  Plane Curves and Parametric Equations  (Pages 711−712) 
 
If f and g are continuous functions of t on an interval I, then the 

equations )(tfx =  and y = g(t) are called         aaaaaaaaaa      a 

          aaaaaaaaa      and t is called the           aaaaaaaaa           . 

The set of points (x, y) obtained as t varies over the interval I is 

called the             aaaaa aa aaa aaaaaaaaaa aaaaaaaaa                  . 

Taken together, the parametric equations and the graph are called 

a                aaaaa aaaaa               , denoted by C. 

 
When sketching (by hand) a curve represented by a set of 

parametric equations, you can  plot points in the        aaaaaaa     . 

Each set of coordinates (x, y) is determined from a value chosen 

for the           aaaaaaaaa a            . By plotting the resulting points 

in the order of increasing values of t, the curve is traced out in a 

specific direction, called the          aaaaaaaaaaa            of the 

curve. 

 
Example 1: Sketch the curve described by the parametric 

equations 3−= tx  and 12 += ty , 31 ≤≤− t . 
 
 
 
II.  Eliminating the Parameter  (Pages 713−714) 
 
Eliminating the parameter is the process of                aaaaaaa a 

aaaaaaaaaaa aaaaaaaa aaa a aaa aa aaaa aaaaaaaaaa aaa aaaaa aa 

a aaa aa aaaaaaaaaa aaaaa                                                             . 

Describe the process used to eliminate the parameter from a set 
of parametric equations. 
 
aaaaa aaaa aaa aaa aa aaaaaaaaaa aaaaaaaaaa aaaaa aaa a aa aaa 
aaaaaaaaa aaaa aaaaaaaaaa aaa a aa aaa aaaaaa aaaaaaaaaa 
aaaaaaaaa aaaaaaaaa aaa aaaaaaaaa aaaaaaaa aa a aaaaaaaaaaa 
aaaaaaaaa 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to sketch the graph 
of a curve given by a set 
of parametric equations 

What you should learn 
How to eliminate the 
parameter in a set of 
parametric equations 

y

-10

-6

-2

2

6

10

-5 -3 -1 1 3 5
x
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When converting equations from parametric to rectangular form, 

the range of x and y implied by the parametric equations may be  

       aaaaaaa         by the change to rectangular form. In such 

instances, the domain of the rectangular equation must be  

                       aaaaaaaa aa aaaa aaa aaaaa aaaaaaa aaa aaaaa aa 

aaa aaaaaaaaaa aaaaaaaaa                            . 

 
To eliminate the parameter in equations involving trigonometric 

functions, try using the identity           aaaa a a aaaa a a a             . 

 
 
III.  Finding Parametric Equations  (Pages 715−716) 
 
Describe how to find a set of parametric equations for a given 
graph. 
 
aaaaaaa aaaa aaaaa 
 
 
A curve C represented by )(tfx =  and y = g(t) on an interval I is 

called             aaaaaa               if f ′ and g′ are continuous on I and 

not simultaneously 0, except possibly at the endpoints of I. The 

curve C is called piecewise smooth if                  aa aa aaaaaa aa 

aaaa aaaaaaaaaaa aa aaaa aaaaaaaaa aa a                         . 

 
 
IV.  The Tautochrone and Brachistochrone Problems 
        (Page 717) 
 
Describe the tautochrone problem and the brachistochrone 
problem in your own words. 
 
 
aaaaaaa aaaa aaaa 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to find a set of 
parametric equations to 
represent a curve 

What you should learn 
Understand two classic 
calculus problems, the 
tautochrone and 
brachistochrone problems 
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Section 10.3    Parametric Equations and Calculus 
 
Objective: In this lesson you learned how to use a set of parametric 

equations to find the slope of a tangent line to a curve 
and the arc length of a curve. 

 
I.  Slope and Tangent Lines  (Pages 721−723) 
 
If a smooth curve C is given by the equations )(tfx =  and             

y = g(t), then the slope of C at (x, y) is dy
dx

= , 

dx
dt

≠         a          . 

 
Example 1: For the curve given by the parametric equations 

3−= tx  and 12 += ty , 31 ≤≤− t , find the slope 
at the point (−3, 1). 

 
 a 
 
 
 
 
II.  Arc Length  (Pages 723−725) 
 
If a smooth curve C is given by )(tfx =  and y = g(t) such that C 

does not intersect itself on the interval a t b≤ ≤  (except possibly 

at the endpoints), then the arc length of C over the interval is 

given by 

b b

a a
s dt dt= =∫ ∫  

 
 
 
In the preceding section you saw that if a circle rolls along a line, 

a point on its circumference will trace a path called a 

            aaaaaaa             . If the circle rolls around the 

circumference of another circle, the path of the point is an 

          aaaaaaaaaa                . 

 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find the slope of 
a tangent line to a curve 
by a set of parametric 
equations 

What you should learn 
How to find the arc 
length of a curve given 
by a set of parametric 
equations 

aaaaa
aaaaa
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III.  Area of Surface of Revolution  (Page 726) 
 
If a smooth curve C given by )(tfx =  and y = g(t) does not 
cross itself on the interval a t b≤ ≤ , then the area S of the 
surface of revolution formed by revolving C about the coordinate 
axes is given by 
 

1.  S = ∫           Revolution about the       aaaaaa       :  g(t) ≥ 0 

 
 

2.  S = ∫           Revolution about the       aaaaaa       :  f(t) ≥ 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to find the area of a 
surface of revolution 
(parametric form) 

aaa 
aa 

aa 
aaa
aa 

aaa 

aaa 
aa 

aa 
aaa
aa 

aaa 
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Section 10.4    Polar Coordinates and Polar Graphs 
 
Objective: In this lesson you learned how to sketch the graph of an 

equation in polar form, find the slope of a tangent line to 
a polar graph, and identify special polar graphs. 

 
I.  Polar Coordinates  (Page 731) 
 
To form the polar coordinate system in the plane, fix a point O, 

called the           aaaa           or           aaaaaa          , and construct 

from O an initial ray called the           aaaa aaaa          . Then each 

point P in the plane can be assigned           aaaaa aaaaaaaaa       a 

(r, θ) as follows: 

 
1)  r =           aaaaaaaa aaaaaaaa aaaa a aa a              a 
 
2)  θ =           aaaaaaaa aaaaaa aaaaaaaaaaaaaa aaaa aaaaa aaaa aa  

                      aaa aaaaaaa aaaa a aa a                                          a 

 
In the polar coordinate system, points do not have a unique 

representation. In general, the point (r, θ) can be represented as  

          aaa a a aaaa           or         aa aa a a aa a aaaa         , where 

n is any integer. Moreover, the pole is represented by (0, θ), 

where θ is             aaa aaaaa               . 

 
Example 1: Plot the point (r, θ) = (− 2, 11π/4) on the polar 

coordinate system. 
 
 
 
 
 
 
 
 
 
 
 
Example 2: Find another polar representation of the point                  

(4, π/6). 
 
 aaaaaaa aaaa aaaaa aaa aaaa aaaaa aa aa aa aaaaaa 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
polar coordinate system 

y

x 0 

 π/2 

 π

 3π/2 
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II.  Coordinate Conversion  (Page 732) 
 
The polar coordinates (r, θ) of a point are related to the 
rectangular coordinates (x, y)of the point as follows . . . 
 
a a a aaa aaaa a a aaa a 
 
aaa a a aaaaaaaa a aa a aa 
 
Example 3: Convert the polar coordinates (3, 3π/2) to 

rectangular coordinates. 
 aaa a aa 
 
 
 
III.  Polar Graphs  (Pages 733−734) 
 
One way to sketch the graph of a polar equation is to 

             aaaaaaa aa aaaaaaaaaaa aaaaaaaaaaa aaa aaaa aaaaaa aaa 

aaaaa aa aaa aaaaaaaaaaa aaaaaaaa                             . 

 
To convert a rectangular equation to polar form,            aaaaaa 

aaaaaaa a aa a aaa a aaa a aa a aaa aa aaa aaaaaaaa                   . 

 
Example 4: Find the rectangular equation corresponding to the 

polar equation 
θsin
5−=r . 

 a a a a 
 
 
 
 
Example 5: Sketch the graph of the polar equation θcos3=r . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to rewrite 
rectangular coordinates 
and equations in polar 
form and vice versa 

What you should learn 
How to sketch the graph 
of an equation given in 
polar form 

y

x 0 

 π/2 

 π 

 3π/2 
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IV.  Slope and Tangent Lines  (Pages 735−736) 
 
If f is a differentiable function of θ, then the slope of the tangent 
line to the graph of ( )r f θ=  at the point (r, θ) is 
 

/
/

dy dy d
dx dx d

θ
θ

= = , 

 

provided that 0dx
dθ

≠  at (r, θ). 

 

Solutions to 0dy
dθ

=  yield                aaaaaaaa aaaaaaaa               , 

provided that 0dx
dθ

≠ . Solutions to 0dx
dθ

=  yield      aaaaaa       , 

aaaaaaaa               , provided that 0dy
dθ

≠ . 

 
If ( ) 0f α =  and ( ) 0f α′ ≠ , then the line θ α=  is            aaaaaaa 

aa aaa aaaa aa aaa aaa aa a a aaaa                           . This theorem 

is useful because it states that                         aaa aaaaa aa a  aaaa 

aaa aa aaaa aaa aaaaaaa aa aa aaa aaaa                                    . 

 
 
V.  Special Polar Graphs  (Page 737) 
 
List the general equations that yield each of the following types 
of special polar graphs: 
 
Limaçons:     a a a a a aaa aa a a a a a aaa aa a a aa a a a 
 
Rose curves:     a a a aaa aaa a a a aaa aaa a a aa a aaaaaa aa a aa aaaa aa aaaaaa aa a aa aaaa 
 
Circles:     a a a aaa aa a a a aaa a 
 
Lemniscates:     aa a aa aaa aaa aa a aa aaa aa 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to find the slope of 
a tangent line to a polar 
graph 

What you should learn 
How to identify several 
types of special polar 
graphs 

aaaa aaa a a a aaaa aaa 

a aaaa aaa a a a aaaa aaa 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 10.5    Area and Arc Length in Polar Coordinates 
 
Objective: In this lesson you learned how to find the area of a 

region bounded by a polar graph and the arc length of a 
polar graph. 

 
I.  Area of a Polar Region  (Pages 741−742) 
 
If f is continuous and nonnegative on the interval [ , ]α β , 

0 2β α π< − ≤ , then the area of the region bounded by the graph 

of ( )r f θ=  between the radial lines θ α=  and θ β=  is given 

by                                                                                         . 

 
 
 
II.  Points of Intersection of Polar Graphs  (Pages 743−744) 
 
Explain why care must be taken in determining the points of 
intersection of two polar graphs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
III.  Arc Length in Polar Form  (Page 745) 
 
Let f be a function whose derivative is continuous on an interval 

α θ β≤ ≤ . The length of the graph of ( )r f θ=  from θ α=  to 

θ β=  is                                                                                            . 

 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find the area of a 
region bounded by a 
polar graph 

What you should learn 
How to find the points of 
intersection of two polar 
graphs 

What you should learn 
How to find the arc 
length of a polar graph 
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IV.  Area of a Surface of Revolution  (Page 746) 
 
Let f be a function whose derivative is continuous on an interval 
α θ β≤ ≤ . The area of the surface formed by revolving the 
graph of ( )r f θ=  from θ α=  to θ β=  about the indicated line 
is as follows. 
 
1.  About the polar axis: 
  
 
 
 

2.  About the line 
2
πθ = : 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to find the area of a 
surface of revolution 
(polar form) 

y
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Section 10.6    Polar Equations of Conics and Kepler’s Laws 
 
Objective: In this lesson you learned how to analyze and write a 

polar equation of a conic. 
 
 
I.  Polar Equations of Conics  (Pages 750−752) 
 
Let F be a fixed point (focus) and D be a fixed line (directrix) in 

the plane. Let P be another point in the plane and let e 

(eccentricity) be the ratio of the distance between P and F to the 

distance between P and D. The collection of all points P with a 

given eccentricity is a                aaaaa                  . 

 
The conic is an ellipse if         a a a a a         . The conic is a 

parabola if            a a a            . Finally, the conic is a hyperbola 

if           a a a        . 

 
For each type of conic, the pole corresponds to the           aaaaa         . 
 
The graph of the polar equation          a a aaaa a a aaa aa           a 

is a conic with a vertical directrix to the right of the pole, where 

e > 0 is the eccentricity and | d | is the distance between the focus 

(pole) and the directrix. 

 
The graph of the polar equation          a a aaaa a a aaa aa           a 

is a conic with a vertical directrix to the left of the pole, where            

e > 0 is the eccentricity and | d | is the distance between the focus 

(pole) and the directrix. 

 
The graph of the polar equation          a a aaaa a a aaa aa           a 

is a conic with a horizontal directrix above the pole, where e > 0 

is the eccentricity and | d | is the distance between the focus 

(pole) and the directrix. 

 
The graph of the polar equation          a a aaaa a a aaa aa           a 

is a conic with a horizontal directrix below the pole, where e > 0 

is the eccentricity and | d | is the distance between the focus 

(pole) and the directrix. 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to analyze and write 
polar equations of conics 
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Example 1: Identify the type of conic from the polar equation 

θsin1210
36

+
=r , and describe its orientation. 

 
 aaaaaaaaa aaaa a aaaaaaaaaa aaaaaaaaa aaaaa aaa 

aaaa 
 
 
 
 
II.  Kepler’s Laws  (Pages 753−754) 
 
List Kepler’s Laws, which can be used to describe the orbits of 
the planets about the sun. 
 
1.  aaaa aaaaaa aaaaa aa aa aaaaaaaaaa aaaaa aaaa aaa aaa aa a 
aaaaaa 
 
2.  a aaa aaaa aaa aaa aa aaa aaaaaa aaaaaa aaa aaaaa aaaaa aa 
aaa aaaaaaa aa aaaaa aaaaaa 
 
3.  aaa aaaaaa aa aaa aaaaaa aa aaaaaaaaaaaa aa aaa aaaa aa aaa 
aaaa aaaaaaaa aaaaaaa aaa aaaaaa aaa aaa aaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to understand and 
use Kepler’s Laws of 
planetary motion 
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Chapter 11 Vectors and the Geometry of 
   Space 
 
Section 11.1       Vectors in the Plane 
 
Objective: In this lesson you learned how to represent vectors, perform 

basic vector operations, and represent vectors graphically. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I.  Component Form of a Vector  (Pages 764−765) 
 
A directed line segment has an         aaaaaaa aaaaa           and a  

          aaaaaaaa aaaaa          . 

The magnitude of the directed line segment PQ, denoted by  

          aaaaaa          , is its           aaaaaa          . The length of a 

directed line segment can be found by         aaaaa aaa aaaaaaaa 

aaaaaaa                             . 

 
If v is a vector in the plane whose initial point is at the origin and 

whose terminal point is (v1, v2), then the                 aaaaaaaaa 

aaaa aa a                 is given by 21, vv=v , where the 

coordinates v1 and v2 are called the           aaaaaaaaaa aa a      . 

 
If P (p1, p2) and Q (q1, q2) are the initial and terminal points of a 

directed line segment, the component form of the vector v 

represented by PQ is      aaaa aaa          =        aaa a a aa a aaa       . 

 
The length (or magnitude) of v is: 
||v|| = =  

Course Number 
 
Instructor 
 
Date 
 

Important Vocabulary  Define each term or concept. 
 
Vector v in the plane  aaa aaa aa aaa aaaaaaaa aaaa aaaaaaaa aaaa aaa aaaaaaaaaa aa a 
aaaaa aaaaaaaa aaaa aaaaaaa aaa aaaaaaa a a aaa 
Standard position  aaa aaaaaaaaaaaaaa aa a aaa aa aaaaaaaaaa aaaaaaaa aaaa aaaaaaaa 
aaaaa aaaaaaa aaaaa aa aaa aaaaaaa 
Zero vector  a aaaaaa aaaaa aaaaaaa aaaaa aaa aaaaaaaa aaaaa aaaa aaa aa aaa aaaaaaa 
aaaaaaa aa a a aaa aaa 
Unit vector  a aaaaaa a aaaa aaaa aaaaa a aa 
 
Standard unit vectors  aaa aaaa aaaaaaa aaa aa aaa aaa aaa aaaaaaa aa a a aaa aa aaa      
a a aaa aaa aaaaa aaa aa aaaa aa aaaaaaaaa aaa aaaaaa a a aaaa aaaa 

What you should learn 
How to write the 
component form of a 
vector 

    aaa a aaaa a aaa a aaaaa     aa
a a aa

aa 



204 Chapter 11    Vectors and the Geometry of Space 

 Larson/Edwards   Calculus 9e   Notetaking Guide 
  Copyright © Cengage Learning. All rights reserved. 

If 21, vv=v , v can be represented by the                aaaaaaaa 

aaaa aaaaaaaa aa aaaaaaaa aaaaaaaaa                from P(0, 0) to 

Q(v1, v2). 

 
The length of v is also called the               aaaa aa a            . 
 
Example 1: Find the component form and length of the vector 

v that has (1, 7) as its initial point and (4, 3) as its 
terminal point. 

 
 a a aaa a aaa aaaaa a a 
 
II.  Vector Operations  (Pages 766−769) 
 
Let u = 〈u1, u2〉 and v = 〈v1, v2〉 be vectors and let c be a scalar. 

Then the vector sum of u and v is the vector: 

     u + v =           aaa a aaa aa a aaa            

and the scalar multiple of c and u is the vector: 

     cu =           aaaaa aaaa                                . 

Furthermore, the negative of v is the vector  

     − v =           aaaaa a aa aaa a aaa            

and the difference of u and v is 

     u − v =   a a aaaa a aaa a aaa aa a aaa            

 
Geometrically, the scalar multiple of a vector v and a scalar c is 

           aaa aaaaaa aaaa aa aaaaa aa aaaa aa aaa aaaaaa a               . 

 
If c is positive, cv has the           aaaa          direction as v, and if c 

is negative, cv has the       aaaaaaaa       direction. 

 
To add two vectors geometrically,           aaaaaaaa aaaa aaaaaaaa 

aaaaaaaa aaaaa aaaaaaaaaa aa aaaaaaaaaaa aa    aaaa aaa aaaaaaa 

aaaaa aa aaa a aaaa aaa aaaaaaaa aaaaa aa aaa aaaaa                    . 

 
The vector u + v, called the           aaaaaaaaa aaaaaa         , is 

          aaa aaaaaaaa aa a aaaaaaaaaaaaa aaaaaa a aaa a aa aaa 

aaaaaaaa aaaaa                                   . 

 
 

What you should learn 
How to perform vector 
operations and interpret 
the results geometrically 
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Example 2: Let u = 〈1, 6〉 and v = 〈− 4, 2〉. Find: 
(a) 3u  (b)  u + v 

 
 aaa  aaa aaa aaa  aa aa aa 
 
 
Let u, v, and w be vectors in the plane, and let c and d be scalars. 
Complete the following properties of vector addition and scalar 
multiplication: 
 
1.  u + v =           a a a          a 

2.  (u + v) + w =           a a aa a aa          a 

3.  u + 0 =           a          a 

4.  u + (− u) =           a          a 

5.  c(du) =           aaaaa          a 

6.  (c + d)u =          aa a aa          a 

7.  c(u + v) =          aa a aa          a 

8.  1(u) =           a          a  ;  0(u) =           a          a 

 
Any set of vectors, with an accompanying set of scalars, that 

satisfies these eight properties is a               aaaaa aaaaa              . 

 
Let v be a vector and let c be a scalar. Then  

||cv|| =           aaa aaaaa          a 

 
To find a unit vector u that has the same direction as a given 

nonzero vector v,                       aaaaaa a aa aaa aaaaaaaaaa aaaa 

aaa             a a aaaaaaa                                                  . 

 
In this case, the vector u is called a                  aaaa aaaaaa aa aaa 

aaaaaaaaa aa a                 . The process of multiplying v by 1/||v|| 

to get a unit vector is called             aaaaaaaaaaaaa aa a              . 

 
Example 3: Find a unit vector in the direction of v = 〈− 8, 6〉. 
 
 aaaaaaa a aa aaaaa aaaaa a aa aaaa aaaa 
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III.  Standard Unit Vectors  (Pages 769−770) 
 
Let v = 〈v1, v2〉. Then the standard unit vectors can be used to 

represent v as v =           aaa a aaa          , where the scalar v1 is 

called the           aaaaaaaaaa aaaaaaaaa aa a           and the scalar 

v2 is called the           aaaaaaaa aaaaaaaaa aa a          . The vector 

sum v1i + v2j is called a          aaaaaa aaaaaaaaaaa           of the 

vectors i and j.  

 
Example 4: Let v = 〈− 5, 3〉. Write v as a linear combination of 

the standard unit vectors i and j. 
 a a a aa a aa 
 
Example 5: Let v = 3i − 4j and w = 2i + 9j. Find v + w. 
 a a a a aa a aa 
 

If u is a unit vector and θ is the angle (measured 

counterclockwise) from the positive x-axis to u, the terminal 

point of u lies on the unit circle and u =         aaa aa aaa aa        =  

        aaaa aaa a aaaa aaa        a. 

 
Now, if v is any nonzero vector that makes an angle θ with the 

positive x-axis, it has the same direction as u and 

v =         aaaaa a aa aaa aa         =       aaaaa  a aaaaa aaaa aaa    . 

 
 
IV.  Applications of Vectors  (Pages 770−771) 
 
Describe several real-life applications of vectors. 
 
aaaaaaa aaaa aaaaa 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to write a vector as 
a linear combination of 
standard unit vectors 

What you should learn 
How to use vectors to 
solve problems involving 
force or velocity 
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Section 11.2    Space Coordinates and Vectors in Space 
 
Objective: In this lesson you learned how to plot points in a three-

dimensional coordinate system and analyze vectors in 
space. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
I.  Coordinates in Space  (Pages 775−776) 
 
A three-dimensional coordinate system is constructed by 

          aaaaaaa a aaaaaa aaaaaaaaaaaaa aa aaaa aaa aa aaa aaaaaa 

aa aaa aaaaaa aa aaa aaaaaaaaa aaaaa                                           . 

 
Taken as pairs, the axes determine three coordinate planes:  the  

       aaaaaaaa      , the         aaaaaaa      , and the        aaaaaaa      . 

 
These three coordinate planes separate the three-space into eight  

           aaaaaaa            . The first of these is the one for which     a 

aaaaa aaaaaaaaaaa aaa aaaaaaaa                                           . 

 
In the three-dimensional system, a point P in space is determined 
by an ordered triple (x, y, z), where x, y, and z are as follows . . . 
 
x =           aaaaaaaa aaaaaaaa aaaa aaaaaaaa aa a              , 
 
y =          aaaaaaaa aaaaaaaa aaaa aaaaaaaa aa a                , 
 
and z =         aaaaaaaa aaaaaaaa aaaa aaaaaaaa aa a          . 
 
A three-dimensional coordinate system can have either a       aaa 

aaaaaaa                 or a         aaaaaaaaaaa                orientation. To 

determine the orientation of a system,           aaaaaaa aaaa aaa aaa 

aaaaaaaa aa aaa aaaaaaa aaaa aaaa aaaa aaaaaaaa aa aaa aaaaaaaa 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
three-dimensional 
rectangular coordinate 
system 

Important Vocabulary  Define each term or concept. 
 
Sphere  aaaaa aaaaaa aa aaaa aaa aaa  aaa aaaaaa aa aaa aaa aa aaa aaaaaa aaa aa aa 
aaaa aaaa aaa aaaaaaaa aaaaaaa aaa aa aa aaa aaaa aaa aaa aa aa 
Standard unit vector notation in space  aaaa aaa aaaa aaaaaaa a a aaa aa aa aa aaa 
aaaaaaaaa aa aaa aaaaaaaa aaaaaaa a a aaa aa aa aa aaa aaaaaaaaa aa aaa aaaaaaaa 
aaaaaaa aaa a a aaa aa aa aa aaa aaaaaaaaa aa aaa aaaaaaaa aaaaaa aa aaaaaaaaa aaa 
aaaaaa a a aaaa aaa aaa aa a a aaa a aaa a aaaa 
Parallel vectors in space  aaa aaaaaaa aaaaaaa a aaa a aaaa aaaa aaaaa aa aaaa aaaaaa 
a aaaa aaaa a a aaa 
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aa aaa aaaaaaaa aa aaa aaaaaaa aaa aaaa aaa aaaaaa aaaaaaaa aaa 

aaa aaaaaa aa aaaaaaaaaaaa aa aaaaaaaaaa   a aaaaaaaaa aa aaaaa 

aaaa aaaaaa aaaaa aaa aaaaaa                                                  . 

 
The distance between the points (x1, y1, z1) and (x2, y2, z2) given 
by the Distance Formula in space is 
 

=d  

 
The midpoint of the line segment joining the points (x1, y1, z1) 
and (x2, y2, z2) given by the Midpoint Formula in Space is 
 

     
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
 

 
Example 1: For the points (2, 0, − 4) and (− 1, 4, 6), find  

(a) the distance between the two points, and 
(b) the midpoint of the line segment joining them. 

 
 aaa  aaaa     aaa  aaaaa aa aa 
 
 
 
The standard equation of a sphere whose center is (x0, y0, z0) and 

whose radius is r is          aa a aaaa a aa a aaaa a aa a aaaa a aa           . 

 
Example 2: Find the center and radius of the sphere whose 

equation is 017824222 =+++−++ zyxzyx . 
 
 aaaaaaa aaa a aa a aaa aaaaaaa a a a 
 
 
 
 
II.  Vectors in Space  (Pages 777−779) 
 
In space, vectors are denoted by ordered triples of the form  

          a a aaaa aaa aaa                        . 

 
The zero vector in space is denoted by           a a aa aa aa          . 
 

What you should learn 
How to analyze vectors 
in space 

          aaa a aaaa a aaa a aaaa a aaa a aaaa        a 

 aa a aa      aa a aa       aa a aa  
aaaa  a  aaa  a  aaa     
     a              a                a    a 



Section 11.2     Space Coordinates and Vectors in Space 209 

Larson/Edwards   Calculus 9e   Notetaking Guide 
Copyright © Cengage Learning. All rights reserved. 

If v is represented by the directed line segment from P(p1, p2, p3) 

to Q(q1, q2, q3), the component form of v is given by   

                   aaaaaaaaaaa aaa aaaaaaaaaaa aa aaa aaaaaaa aaaaa 

aaaa aaa aaaaaaaaaaa aa aaa aaaaaaaa aaaaaa aaaa aaaa a a aaaa 

aaa aaa a aaa a aaa aa a aaa aa a aaa                                                 . 

 
Two vectors are equal if and only if                aaaaa aaaaaaaaaaaa 

aaaaaaaaaa aaa aaaaa                                                     . 

 
The length of u = 〈u1, u2, u3〉 is:   
 
|| u || =  
 
 
A unit vector u in the direction of v is           a a a a aaa a a a     . 
 
The sum of u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉 is  

u + v =          aaa a aaa aa a aaa aa a aaa           . 

 
The scalar multiple of the real number c and u = 〈u1, u2, u3〉 is  

cu =            aaaaa aaaa aaaa           . 

 
Example 3: Determine whether the vectors 〈6, 1, − 3〉 and            

〈− 2, − 1/3, 1〉 are parallel. 
 aaaa aaaa aaa aaaaaaaaa 
 
To use vectors to determine whether three points P, Q, and R in 

space are collinear,            aaaaaaaaa aaaaaaa aaa aaaaaaa aa aaa 

aa aaa aaaaaaaa                                                     . 

 
 
III.  Application  (Page 779) 
 
Describe a real-life application of vectors in space. 
 
aaaaaaa aaaa aaaaa 
 
 
 
 
 
 
 

What you should learn 
How to use three-
dimensional vectors to 
solve real-life problems 

            aa
a a aa

a a aa
aa 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 11.3    The Dot Product of Two Vectors 
 
Objective: In this lesson you learned how to find the dot product of 

two vectors in the plane or in space. 
 
 
 
 
 
 
 
 
 
 
I.  The Dot Product  (Pages 783−784) 
 
The dot product of u = 〈u1, u2〉 and v = 〈v1, v2〉 is 

       a a a a aaaa a aaaa          . 

The dot product of u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉 is 

u • v =              aaaa a aaaa a aaaa               . 

The dot product of two vectors yields a              aaaaaa             . 

 
Let u, v, and w be vectors in the plane or in space and let c be a 
scalar. Complete the following properties of the dot product: 
 
1.  u • v =           a a a          a 

2.  0 • v =           a          a 

3.  u • (v + w) =          a a a a a a a          a 

4.  v • v =          aaaaaa          a 

5.  c(u • v) =           aa a a          =          a a aa          a 

 
Example 1: Find the dot product:  〈5, − 4〉 • 〈9, − 2〉. 
 
 aa 
 
Example 2: Find the dot product of the vectors 〈− 1, 4, − 2〉 

and 〈0, − 1, 5〉. 
 a aa 
 
 
II.  Angle Between Two Vectors  (Pages 784−785) 
 
If θ is the angle between two nonzero vectors u and v, then θ can 

be determined from           aaa a a aa a aaaaaaa aaaaaa                . 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use properties of 
the dot product of two 
vectors 

What you should learn 
How to find the angle 
between two vectors 
using the dot product 

Important Vocabulary  Define each term or concept. 
 
Angle between two nonzero vectors  aaa aaaaa aa a a a a aa aaaaaaa aaa aaa aaaaaaa 
aaaaaaaa aaaaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa 
Orthogonal  aaaaaaa aa aaaaa aaaaaaa aaaaaaaaaaa aaa aaaa aaaaaaa aa 
aaaaaaaaaaaaaaaa 
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Example 3: Find the angle between v = 〈5, − 4〉 and                   
w = 〈9, − 2〉. 

 
 aaaaa aaaaaaa 
 
An alternative way to calculate the dot product between two 

vectors u and v, given the angle θ between them, is  

         a a a a aaaaa aaaaa aaa a          . 

 
Two vectors u and v are orthogonal if         a a a a a          . 
 
Two nonzero vectors are orthogonal if and only if                    aa 

aaaaa aaaaaaa aaaa aa aaa                              . 

 
Example 4: Are the vectors u = 〈1, − 4〉 and v = 〈6, 2〉 

orthogonal? 
 
 aa 
 
 
III.  Direction Cosines  (Page 786) 
 
For a vector in the plane, it is convenient to measure direction in 

terms of the angle, measured counterclockwise, from              aaa 

aaaaaaaa aaaaaa aa aaa aaaaaa              . In space it is more 

convenient to measure direction in terms of                   aaa aaaaa 

aaaaaaa aaa aaaaaaa aaaaaa a aaa aaa aaaaa aaaa aaaaaaa aa aa 

aaa a                      . The angles α, β, and γ are the                aaaaa 

aaaaaa aa a            , and cos α, cos β, and cos γ are the    aaaaaaa 

aaaaaaa aa a                             . 

 
The measure of α, the angle between v and i, can be found from  

                 aaa a a aaaaaaaa            . The measure of β, the angle 

between v and j, can be found from              aaa a a aaaaaa          . 

The measure of γ, the angle between v and k, can be found from  

                 aaa a a aaaaaaaa            . 

 

Any nonzero vector v in space has the normalized form v
v

 =  

              aaa a a a aaa a a a aaa a a                . 

What you should learn 
How to find the direction 
cosines of a vector in 
space 
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The sum of the squares of the directions cosines 
2 2 2cos cos cosα β γ+ +  =             a               . 

 
IV.  Projections and Vector Components  (Pages 787−788) 
 
Let u and v be nonzero vectors. Moreover, let u = w1 + w2, 

where w1 is parallel to v, and w2 is orthogonal to v. The vectors 

w1 and w2 are called            aaaaaa aaaaaaaaaa aa a                . 

The vector w1 is called the projection of u onto v and is denoted 

by           aa a aaaaa a          . The vector w2 is given by  

         aa a a a aa           , and is called the         aaaaaa aaaaaaaaa 

aa a aaaaaaaaaa aa a                   . 

 
Let u and v be nonzero vectors. The projection of u onto v is 

given by projv u =               aaa a aaaaaaaaaa a            . 

 
 
V.  Work  (Page 789) 
 
The work W done by a constant force F as its point of 

application moves along the vector PQ is given by either of the 

following: 

1.     a a aaaaaaaaaaa aaaaaa 

2.     a a a a aa 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to find the 
projection of a vector 
onto another vector 

What you should learn 
How to use vectors to 
find the work done by a 
constant force 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

y

x

y

x

y

x

y

x

y

x

y

x
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Section 11.4    The Cross Product of Two Vectors in Space 
 
Objective: In this lesson you learned how to find the cross product 

of two vectors in space. 
 
 
I.  The Cross Product  (Pages 792−796) 
 
A vector in space that is orthogonal to two given vectors is called 

their           aaaaa aaaaaaa          . 

 
Let u = u1i + u2j + u3k and v = v1i + v2j + v3k be two vectors in 

space. The cross product of u and v is the vector 

u × v =       aaaaa a aaaaaa a aaaaa a aaaaaa a aaaaa a aaaaaa 

 
Describe a convenient way to remember the formula for the 
cross product. 
 
aaaaaaa aaaa aaaaa 
 
 
 
 
Example 1: Given u = − 2i + 3j − 3k and v = i − 2j + k, find 

the cross product u × v. 
 a aa a a a a 
 
Let u, v, and w be vectors in space and let c be a scalar. 
Complete the following properties of the cross product: 
 
1.  u × v =           a aa a aa          a 
 
2.  u × (v + w) =           aa a aa a aa a aa          a 
 
3.  c(u × v) =           aaaa a a a a a aaaa          a 
 
4.  u × 0 =           a a a a a          a 
 
5.  u × u =           a          a 
 
6.  u • (v × w) =           aa a aa a a          a 
 
Complete the following geometric properties of the cross 
product, given u and v are nonzero vectors in space and θ is the 
angle between u and v. 
 
1.  u × v is orthogonal to          aaaa a aaa a          . 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find the cross 
product of two vectors in 
space 
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2.  || u × v || =           aa a aa  aa a aa aaa a          . 
 
3.  u × v = 0 if and only if           a aaa a aaa aaaaa aaaaaaaaa aa a  

aaaaa aaaaa                                             . 

 
4.  || u × v || = area of the parallelogram having      a aaa a aa      a  

                       aaaaaaaa aaaaa               . 

 
 
II.  The Triple Scalar Product  (Pages 796−797) 
 
For vectors u, v, and w in space, the dot product of u and v × w 

is called the          aaaaaa aaaaaa aaaaaaa          of u, v, and w, 

and is found as 

 =×• )( wvu  

 
The volume V of a parallelepiped with vectors u, v, and w as 

adjacent edges is           a a a a a aa a aa a          . 

 
Example 2: Find the volume of the parallelepiped having 
 u = 2i +j − 3k, v = i − 2j + 3k, and w = 4i − 3k as 
 adjacent edges. 
 
 aaa aaaaaa aa a aaaaa aaaaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to use the triple 
scalar product of three 
vectors in space 

 aa    aa    
aaaa aa    aa   
aaaa aa   aa   
aaa 
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Section 11.5    Lines and Planes in Space 
 
Objective: In this lesson you learned how to find equations of lines 

and planes in space, and how to sketch their graphs. 
 
 
I.  Lines in Space  (Pages 800−801) 
 
Consider the line L through the point P(x1, y1, z1) and parallel to 

the vector v = 〈a, b, c〉. The vector v is      aaaaaaaaa aaaa       for 

the line L, and a, b, and c are            aaaaaaaaa aaaaaaa              . 

 
One way of describing the line L is         aa aaa aaaa aa aaaaaaaa 

aa aaa aaaaaa a aaa aa aa aaa aaaaa aaa aaaaaa aa aa aaaaaaaa aa 

aa aaaaaaa aaaa aa aa a aaaaaa aaaaaaa aa a                                 . 

 
A line L parallel to the vector v = 〈a, b, c〉 and passing through 
the point P = (x1, y1, z1) is represented by the following 
parametric equations, where t is the parameter: 
 
     a a aa a aa     a a aa a aa     a a aa a aa 
 
If the direction numbers a, b, and c are all nonzero, you can 
eliminate the parameter t to obtain the symmetric equations of 
the line: 
          aa a aaaaa a aa a aaaaa a aa a aaaaa 
 
 
II.  Planes in Space  (Pages 801−803) 
 
The plane containing the point (x1, y1, z1) and having normal 
vector n = 〈a, b, c〉 can be represented by the standard form of 
the equation of a plane, which is 
 

          aaa a aaa a aaa a aaa a aaa a aaa a a 
 
By regrouping terms, you obtain the general form of the 
equation of a plane in space: 
 

         aa a aa a aa a a a a                                             a 
 
Given the general form of the equation of a plane it is easy to 

find a normal vector to the plane,                       aaaaaa aaa aaa 

aaaaaaaaaaaa aa aa aa aaa a aaaa a a aaa aa aaa                          . 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to write a set of 
parametric equations for 
a line in space 

What you should learn 
How to write a linear 
equation to represent a 
plane in space 
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Two distinct planes in three-space either are          aaaaaa          a 

or           aaaaaaaaa aa a aaaa          .  

 
If two distinct planes intersect, you can determine the angle θ 

between them from the angle between their normal vectors. If 

vectors n1 and n2 are normal to the two intersecting planes, the 

angle θ between the normal vectors is equal to the angle between 

the two planes and is given by 

          aaa a a a aa a aa a a aaa aa aa aa aa aaa 

Consequently, two planes with normal vectors n1 and n2 are 

1.          aaaaaaaaaaaaa          if n1 • n2 = 0. 
 
2.            aaaaaaaa           if n1 is a scalar multiple of n2. 
 
 
III.  Sketching Planes in Space  (Page 804) 
 
If a plane in space intersects one of the coordinate planes, the 

line of intersection is called the          aaaaa          of the given 

plane in the coordinate plane. 

 
To sketch a plane in space,           aa aa aaaaaaa aa aaaa aaa aaaaa 

aa aaaaaaaaaaaa aaaa aaa aaaaaaaaaa aaaa                         aaa aaa 

aaaaaa aa aaa aaaaa aaaaaa                                                            . 

 
The plane with equation 3y − 2z + 1 = 0 is parallel to  

          aaa aaaaaa              . 

 
IV.  Distances Between Points, Planes, and Lines 
        (Pages 805−807) 
 
The distance between a plane and a point Q (not in the plane) is 
          a a aaaaaaaaa aa a a aa a a a a aa a aa 
 
where P is a point in the plane and n is normal to the plane. 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to sketch the plane 
given by a linear equation 

What you should learn 
How to find the distances 
between points, planes, 
and lines in space 
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Section 11.6    Surfaces in Space 
 
Objective: In this lesson you learned how to recognize and write 

equations for cylindrical and quadric surfaces, and 
surfaces of revolution. 

 
 
I.  Cylindrical Surfaces  (Pages 812−813) 
 
Let C be a curve in a plane and let L be a line not in a parallel 

plane. The set of all lines parallel to L and intersecting C is 

called a            aaaaaaaa          . C is called the             aaaaaaaaaa 

aaaaa aaa aaaaaaaaaa                      of the cylinder, and the 

parallel lines are called               aaaaaaa              . 

 
The equation of a cylinder whose rulings are parallel to one of 

the coordinate axes contains only                              aaa aaaaaaaa 

aaaaaaaaaaaaa aa aaa aaaaa aaa aaaa                                       . 

 
II.  Quadric Surfaces  (Pages 813−817) 
 
Quadric surfaces are                 aaa aaaaaaaaaaaaaaaaa aaaaaaa aa 

aaaaa aaaaaaaa                                           . 

 
The equation of a quadric surface in space is              a 

aaaaaaaaaaaaa aaaaaaaa aa aaaaa aaaaaaaaa                 . The 

general form of the equation is                 aaa a aaa a aaa a aaa a 

aaa a aaa a aa a aa a aa a a a a                      . There are six basic 

types of quadric surfaces:                   aaaaaaaaaa aaaaaaaaaaa aa 

aaa aaaaaa aaaaaaaaaaa aa aaa aaaaaaa aaaaaaaa aaaaa aaaaaaaa 

aaaaaaaaaaa aaa aaaaaaaaaa aaaaaaaaaa                                     . 

 
The intersection of a surface with a plane is called                   aaa 

aaaaa aa aaa aaaaaaa aa aaa aaaaa                          . To visualize a 

surface in space, it is helpful to          aaaaaaaaa aaa aaaaaa aa 

aaaa aaaaaaaaaaa aaaaaa                        . The traces of quadric 

surfaces are             aaaaaa              . 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to recognize and 
write equations for 
cylindrical surfaces

What you should learn 
How to recognize and 
write equations for 
quadric surfaces 
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To classify a quadric surface,                      aaaaa aa aaaaaaa aaa 

aaaaaaa aa aaaaaaaa aaaaa aaaa aaaaaaaaa aaaaaaa aaaaaa aaaaa 

aa aaa aaaaaaaaaa aaaaaa aa aaaaa aa aaaaaa aaaa aaa aaaaaaaa 

aa aaa aaaaaaaaaa aaaaaa                                                  . For a 

quadric surface not centered at the origin, you can form the 

standard equation by                      aaaaaa aaa aaaaaa                   . 

 
Example 1: Classify and name the center of the surface given 

by 2 2 24 36 9 8 144 18 139 0x y z x y z+ − + − + + = . 
 aaaaaaaa aaaaa aaaaaa aa aaaa aa aa 
 
 
 
 
 
III.  Surfaces of Revolution  (Page 818−819) 
 
Consider the graph of the radius function ( )y r z=  in the yz-

plane. If this graph is revolved about the z-axis, it forms a  

                 aaaaaaa aa aaaaaaaaaa                . The trace of the 

surface in the plane 0z z=  is a circle whose radius is 0( )r z  and 

whose equation is                                                        . 

 
If the graph of a radius function r is revolved about one of the 
coordinate axes, the equation of the resulting surface of 
revolution has one of the following forms. 
 
1.  Revolved about the               aaaaa             :  2 2 2[ ( )]y z r x+ =  
 
2.  Revolved about the               aaaaa             :  2 2 2[ ( )]x z r y+ =  
 
3.  Revolved about the               aaaaa             :  2 2 2[ ( )]x y r z+ =  
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to recognize and 
write equations for 
surfaces of revolution 
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Section 11.7    Cylindrical and Spherical Coordinates 
 
Objective: In this lesson you learned how to use cylindrical or 

spherical coordinates to represent surfaces in space. 
 
 
I.  Cylindrical Coordinates  (Pages 822−824) 
 
The cylindrical coordinate system is an extension of          aaaa 

aaaaaaaaaaa aa aaa aaaaa aa aaaaaaaaaaaaaaa aaaaa                     . 

 
In a cylindrical coordinate system, a point P in space is 

represented by an ordered triple             aaa aa aa             . (r, θ) 

is a polar representation of                       aaa aaaaaaaaaa aa a aa 

aaa aaaaaaaa                  . z is the directed distance from             a 

aa aa a                     . 

 
To convert from rectangular to cylindrical coordinates, or vice 
versa, use the following conversion guidelines for polar 
coordinates. 
 
Cylindrical to rectangular: 
 
    a a a aaa a                   a a a aaa a                          a a a            . 
 
Rectangular to cylindrical: 
 
    aa a aa a aa                   aaa a a aaa                         a a a             . 
 
The point (0, 0, 0) is called the              aaaa              . Because 

the representation of a point in the polar coordinate system is not 

unique, it follows that                               aaa aaaaaaaaaaaaaa aa 

aaa aaaaaaaaaaa aaaaaaaaaa aaaa aa aaaa aaa aaaaaa                    . 

 

Example 1: Convert the point ( ), , 2, , 5
2

r z πθ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 to 

rectangular coordinates. 
 aaa aa aa a aaa aa aa 
 
 
Cylindrical coordinates are especially convenient for 

representing                            aaaaaaaaaaa aaaaaaaa aaa aaaaaaaa 

aa aaaaaaaaaa aaaa aaa aaaaaa aa aaaa aa aaaaaaaa                      . 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use cylindrical 
coordinates to represent 
surfaces in space 
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Give an example of a cylindrical coordinate equation for a 

vertical plane containing the z-axis.                 a a a              . 

 
Give an example of a cylindrical coordinate equation for a 

horizontal plane.                 a a a              . 

 
 
II.  Spherical Coordinates  (Pages 825−826) 
 
In a spherical coordinate system, a point P in space is 

represented by an ordered triple           aaa aa aa             . 

1.  ρ is the distance between            a aaa aaa aaaaaa a a a          . 

2.  θ is the same angle used in                                    aaaaaaaaaaa 

aaaaaaaaaaa aaa a a a                                  . 

3.  φ is the angle between                       aaa aaaaaaaa aaaaaa aaa 

aaa aaaa aaaaaaa aaa a a a a a                              . 

 
To convert from spherical to rectangular coordinates, use: 
 
  a a a aaa a aaa a             a a a aaa a aaa a              a a a aa a     . 
 
 
To convert from rectangular to spherical coordinates, use: 
 

    aa a aa a aa a aa             aaa a a aaa          . 

 
To convert from spherical to cylindrical coordinates (r ≥ 0), use: 
 
       aa a aa aaaa a                   a a a                     a a a aaa a          . 
 
To convert from cylindrical to spherical coordinates (r ≥ 0), use: 
 

                                           a a a              

 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to use spherical 
coordinates to represent 
surfaces in space 
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Chapter 12 Vector-Valued Functions 
 
Section 12.1       Vector-Valued Functions 
 
Objective: In this lesson you learned how to analyze and sketch a space 

curve represented by a vector-valued function and how to 
apply the concepts of limits and continuity to vector-valued 
functions. 

 
I.  Space Curves and Vector-Valued Functions 
     (Pages 834−836) 
 
A space curve C is the set of all ordered triples  aaaaaa aaaaa 

aaaaa  . together with their defining parametric equations           a 

a aaaaa a a aaaaa aaa a a aaaa          where f, g, and h are 

continuous functions of t on an interval I. 

 
A function of the form ( ) ( ) ( )t f t g t= +r i j  in a plane or 

( ) ( ) ( ) ( )t f t g t h t= + +r i j k  in space is a                aaaaaaaaaaaaa 

aaaaaaaa             , where the component functions f, g, and h are 

real-valued functions of the parameter t. Vector-valued functions 

are sometimes denoted as         aaaa a aaaaaa aaaaa         or       a 

aaa a aaaaaa aaaaa aaaaa                    . 

 
Vector-valued functions serve dual roles in the representation of 

curves. By letting the parameter t represent time, you can use a 

vector-valued function to represent                       aaaaaa aaaaa a 

aaaaa            . Or, in the more general case, you can use a vector-

valued function to             aaaaa aaa aaaaa aa a aaaaa           . In 

either case, the terminal point of the position vector r(t) 

coincides with                 aaa aaaaa aaa aa aa aaa aa aa aa aaa aaa 

aaaaa aa aaa aaaaaaaaaa aaaaaaaaa                . The arrowhead on 

the curve indicates the curve’s         aaaaaaaaaaa         by pointing 

in the direction of increasing values of t. 

 
Unless stated otherwise, the domain of a vector-valued function 

r is considered to be                  aaa aaaaaaaaaaaa aa aaa aaaaaaa 

aa aaa aaaaaaaaa aaaaaaaaa aa aa aaa a                               . 

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
How to analyze and 
sketch a space curve 
given by a vector-valued 
function 
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II.  Limits and Continuity  (Pages 837−838) 
 
Definition of the Limit of a Vector-Valued Function 
 
1. If r is a vector-valued function such that ( ) ( ) ( )t f t g t= +r i j , 

then                                                                             , 

provided f and g have limits as t → a. 

2. If r is a vector-valued function in space such that 

( ) ( ) ( ) ( )t f t g t h t= + +r i j k , then                                                     

                                                                                     , 

provided f, g, and h have limits as t → a. 

 
If r(t) approaches the vector L as t → a, the length of the vector 

r(t) − L approaches          a            . 

 
A vector-valued function r is continuous at the point given by  

t = a if                          aaa aaaaa aa aaaa aaaaaa aa a a a aaa aaaa 

aaaaa aa aaaaa aa aaaa                 . A vector-valued function r is 

continuous on an interval I if                        aa aa aaaaaaaaaa aa 

aaaaa aaaaa aa aaa aaaaaaaa                                        . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to extend the 
concepts of limits and 
continuity to vector-
valued functions 
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Section 12.2    Differentiation and Integration of  
   Vector-Valued Functions 

 
Objective: In this lesson you learned how to differentiate and 

integrate vector-valued functions. 
 
I.  Differentiation of Vector-Valued Functions 
     (Pages 842−845) 
 
The derivative of a vector-valued function r is defined by 

           aaaaa a aaa aaaa a aaa a aaaaaaaa            for all t for 

which the  
 
limit exists. If r′(t) exists, then r is           aaaaaaaaaaa aa a         . 

If r′(t) exists for all t in an open interval I, then r is  

                       aaaaaaaaaaaaaa aa aaaaaaaa a                                . 

Differentiability of vector-valued functions can be extended to 

closed intervals by             aaaaaaaaaaa a aaaaaa aaaaaa             . 

 
If r(t) = f(t)i + g(t)j, where f and g are differentiable functions of 

t, then               aaaaa a a aaaaa a aaaaaa                   . 

 
If r(t) = f(t)i + g(t)j + h(t)k, where f, g, and h are differentiable 

functions of t, then           aaaaa a a aaaaaaa a aaaaaa                  . 

 
Example 1: Find ( )t′r  for the vector-valued function given by 

2( ) (1 ) 5 lnt t t= − + +r i j k . 
 
 aaaaa a aaaa a aaaaaa 
 
 
The parameterization of the curve represented by the vector-

valued function r(t) = f(t)i + g(t)j + h(t)k is smooth on an open 

interval I if                           a aa aaa aaa aa aaa aaaaaaaaaa aa a 

aaa aaaaa a a aaa aaa aaaaa aa a aa aaa aa a                                 . 

 
Let r and u be differentiable vector-valued functions of t, let w 
be a differentiable real-valued function of t, and let c be a scalar. 
 
1.  [ ( )]tD c tr  =                  aaaaaa                   . 

2.  [ ( ) ( )]tD t t±r u  =                  aaaaa a aaaaa                  . 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to differentiate a 
vector-valued function 
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3.  [ ( ) ( )]tD w t tr  =                 aaaa aaaaa a aaaaa aaaa                 . 

4.  [ ( ) ( )]tD t tr u�  =                 aaaa aaa a aaaaa a aaaa                 . 

5.  [ ( ) ( )]tD t t×r u  =                 aaaa a a a aaaaa a aaaa                 . 

6.  [ ( ( ))]tD w tr  =                  aaaaaaaa aaaaa                  . 

7.  If ( ) ( )t t c=r r� , then                  aaaa a aaaaa a a                  . 

 
 
II.  Integration of Vector-Valued Functions  (Pages 846−847) 
 
If ( ) ( ) ( )t f t g t= +r i j , where f and g are continuous on [a, b], 

then the              aaaaaaaaaa aaaaaaaa aaaaaaaaaaa aa a             is 

( ) ( ) ( )t dt f t dt g t dt⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫r i j  and its definite integral 

over the interval               a a a a a              is 

( ) ( ) ( )
b b b

a a a
t dt f t dt g t dt⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫r i j . 

 
If ( ) ( ) ( ) ( )t f t g t h t= + +r i j k , where f, g, and h are continuous 

on [a, b], then the        aaaaaaaaaa aaaaaaaa aaaaaaaaaaa aa a    is 

( ) ( ) ( ) ( )t dt f t dt g t dt h t dt k⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫ ∫r i j  and its 

definite integral over the interval               a a a a a              is 

( ) ( ) ( ) ( )
b b b b

a a a a
t dt f t dt g t dt h t dt k⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫ ∫r i j . 

 
The antiderivative of a vector-valued function is a family of 

vector-valued functions all differing by                         a 

aaaaaaaa aaaaaa a                       . 

 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to integrate a 
vector-valued function 
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Section 12.3    Velocity and Acceleration 
 
Objective: In this lesson you learned how to describe the velocity 

and acceleration associated with a vector-valued 
function and how to use a vector-valued function to 
analyze projectile motion. 

 
I.  Velocity and Acceleration  (Pages 850−853) 
 
If x and y are twice-differentiable function of t, and r is a vector-

valued function given by r(t) = x(t)i + y(t)j, then the velocity 

vector, acceleration vector, and speed at time t are as follows. 

1.  Velocity = v(t) =              aaaaa a aaaaaa a aaaaa                   . 

2.  Acceleration = a(t) =           aaaaaa a aaaaaaaaaa                   . 

3.  Speed = ||v(t)|| =     aaaaaaaaa a a                                    . 

 
List the corresponding definitions for velocity, acceleration, and 
speed along a space curve given by r(t) = x(t)i + y(t)j + z(t)k. 
 
aaaaaaaa a aaaa a aaaaa a aaaaaa a aaaaaa a aaaaaa 

aaaaaaaaaaaa a aaaa a aaaaaa a aaaaaaa a aaaaaaa a aaaaaaa 

aaaaa a aaaaaaaa a aaaaaaaaa a a 

 
 
Example 1: Find the velocity vector and acceleration vector of 

a particle that moves along the plane curve C 
given by ( ) cos 2t t t= −r i j . 

 
 aaaa a aaaaaa a aa 
 aaaa a aaaaaa 
 
 
 
II.  Projectile Motion  (Pages 854−855) 
 
Neglecting air resistance, the path of a projectile launched from 

an initial height h with initial speed v0 and angle of elevation θ is 

described by the vector function 

            

 
 
where g is the acceleration due to gravity. 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to describe the 
velocity and acceleration 
associated with a vector-
valued function 

What you should learn 
How to use a vector-
valued function to 
analyze projectile motion 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 12.4    Tangent Vectors and Normal Vectors 
 
Objective: In this lesson you learned how to find tangent vectors 

and normal vectors. 
 
 
I.  Tangent Vectors and Normal Vectors  (Pages 859−862) 
 
Let C be a smooth curve represented by r on an open interval I. 

The unit tangent vector T(t) at t is defined to be              aaaa a 

aaaaaaaaaaaaaaaa   aaaaa a a                             . 

 
Recall that a curve is smooth on an interval if                       aa aa 

aaaaaaaaaa aaa aaaaaaa aa aaa aaaaaaaa                          . So, 

“smoothness” is sufficient to guarantee that             a aaaaa aaa a 

aaaa aaaaaaa aaaaaa                                      . 

 
The tangent line to a curve at a point is                aaa aaaa aaaaaa 

aaaaaaa aaa aaaaa aaa aaaaaaaa aa aaa aaaa aaaa aaaaaa              . 

 
Let C be a smooth curve represented by r on an open interval I. 

If T′(t) ≠ 0, then the principal unit normal vector at t is defined 

to be                   aaaa a aaaaaaaaaaaaaaa                        . 

 
 
II.  Tangential and Normal Components of Acceleration 
       (Pages 862−865) 
 
For an object traveling at a constant speed, the velocity and 

acceleration vectors                aaa aaaaaaaaaaaaa               . For an 

object traveling at a variable speed, the velocity and acceleration 

vectors                   aaa aaa aaaaaaaaaa aaaaaaaaaaaaa                  . 

 
If r(t) is the position vector for a smooth curve C and N(t) exists, 

then the acceleration vector a(t) lies                           aa aaa aaaaa 

aaaaaaaaaa aa aaaa aaa aaaa                                      . 

 
If r(t) is the position vector for a smooth curve C [for which N(t) 
exists], then the tangential component of acceleration aT and 
the normal component of acceleration aN are as follows. 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find a unit 
tangent vector at a point 
on a space curve 

What you should learn 
How to find the 
tangential and normal 
components of 
acceleration 
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a =T  

 

a =N  

 
Note that 0a ≥N . The normal component of acceleration is also 

called the                aaaaaaaaa aaaaaaaaa aa aaaaaaaaaaaa           . 

 
 
Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 12.5    Arc Length and Curvature 
 
Objective: In this lesson you learned how to find the arc length and 

curvature of a curve. 
 
 
I.  Arc Length and Curvature  (Pages 869−870) 
 
If C is a smooth curve given by ( ) ( ) ( ) ( )t x t y t z t= + +r i j k , on an 

interval [a, b], then the arc length of C on the interval is 

                                                                                                    . 

 
Example 1: Find the arc length of the curve given by 

2( ) sin 2t t t t= − +r i j k , from t = 0 to t = 4. 
 
 aaaaaa 
 
 
 
 
II.  Arc Length Parameter  (Pages 870−871) 
 
Let C be a smooth curve given by ( )tr  defined on the closed 

interval [a, b]. For a t b≤ ≤ , the arc length function is given by 

                                                                                                    . 

 
The arc length s is called the              aaa aaaaa aaaaaaaaa           . 
 
If C is a smooth curve given by ( ) ( ) ( )s x s y s= +r i j  or 

( ) ( ) ( ) ( )s x s y s z s= + +r i j k  where s is the arc length parameter, 

then                 aaaaaaaaa a a               . Moreover, if t is any 

parameter for the vector-valued function r such that ( ) 1t′ =r , 

then t                  aaaa aa aaa aaa aaaaaa aaaaaaaaa                    . 

 
 
III.  Curvature  (Pages 872−875) 
 
Curvature is the measure of                        aaa aaaaaaa a aaaaa 

aaaaa                              . 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find a unit 
tangent vector at a point 
on a space curve 

What you should learn 
How to find the 
tangential and normal 
components of 
acceleration 

What you should learn 
How to find the 
tangential and normal 
components of 
acceleration 
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Let C be a smooth curve (in the plane or in space) given by ( )sr , 

where s is the arc length parameter. The curvature K at s is 

given by . 

 
Describe the curvature of a circle. 
 
a aaaaaa aaa aaa aaaa aaaaaaaaa aa aaa aaaaaa aaaaaaaaa aaa 
aaaaaaaaa aaa aaa aaaaaa aa aaa aaaaaa aaa aaaaaaaaa aaaaaaaa 
aaaa aaa a aaaaaa aaaa a aaaaa aaaaaa aaa a aaaaa aaaaaaaaaa aaa 
aaaaaa aaaa a aaaaa aaaaaa aaa a aaaaa aaaaaaaaa. 
 
 
 
If C is a smooth curve given by r(t), then two additional 
formulas for finding the curvature K of C at t are 
 
K =            aaaaaaaaa a aaaaaaaaa               , or 
 
 
K =          aaaaaaa a aaaaaaaa a aaaaaaaaaa                     . 
 
 
If C is the graph of a twice-differentiable function given by                   
y = f(x), then the curvature K at the point (x, y) is given by 
 
K =                    a aaa a a aa a aaaaaaaaa                       . 
 
 
Let C be a curve with curvature K at point P. The circle passing 

through point P with radius r = 1/K is called the circle of 

curvature if                        aaa aaaaaa aaaa aa aaa aaaaaaa aaaa a 

aaa aaaaa aaa aaaaaa a aaaaaa       aaaaaaa aaaa aaaa aaa aaaaa aa 

aaaa a                                     . The radius is called the       aaaaaa 

aa aaaaaaaaa               at P, and the center of the circle is called 

the                aaaaaa aa aaaaaaaaa                  . 

 
If r(t) is the position vector for a smooth curve C, then the 

acceleration vector is given by 

, where K is the curvature 

of C and ds/dt is the speed. 
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IV.  Application  (Pages 876−877) 
 
A moving object with mass m is in contact with a stationary 
object. The total force required to produce an acceleration a 
along a given path is 
 
  
 
 
 
 
 
 
The portion of this total force that is supplied by the stationary 

object is called the                  aaaaa aa aaaaaaaa                 . 

 
 
Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to find the 
tangential and normal 
components of 
acceleration 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Chapter 13 Functions of Several Variables 
 
Section 13.1       Introduction to Functions of Several 
   Variables 
 
Objective: In this lesson you learned how to sketch a graph, level 

curves, and level surfaces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I.  Functions of Several Variables  (Pages 886−887) 
 
For the function given by ( , )z f x y= , x and y are called the 

                 aaaaaaaaaaa aaaaaaaaa                    and z is called the  

                   aaaaa                   of f. 

 
Example 1: For 2( , ) 100 2 6f x y x y= − − , evaluate f(3, 3). 
 a 
 
 
 
Example 2: For 2 3( , , ) 2 5f x y z x y z= + − , evaluate f(4, 3, 2). 
 aa 
 
 
 
 
II.  The Graph of a Function of Two Variables  (Page 888) 
 
The graph of a function f of two variables is             aaa aaa aa 

aaa aaaaaa aaa aa aa aaa aaaaa a a aaaa aa aaa aaa aa aa aa aaa 

aaaaaa aa    a                                                         . 

 

Course Number 
 
Instructor 
 
Date 
 

Important Vocabulary  Define each term or concept. 
 
Function of two variables  aaa a aa a aaa aa aaaaaaa aaaaa aa aaaa aaaaaaaa aa aa 
aaaa aaaaaaa aaaa aaa aa aa a aaaaa aaaaaaaaaaa a aaaaaa aaaa aaaaaa aaaa aaa aaaa a 
aa aaaaaa a aaaaaaaa aa a aaa aa  
 
Domain of a function of two variables  aaa aaa a aaaaaaaaa aa aaa aaaaaaaaaa aa a 
aaaaaaaa a aa aaa aaaaaaaaa aa aaa aaaaaa aa aa  
 
Range of a function of two variables  aaa aaaaaaaaaaaaa aaa aa aaaaaaaaa a a aaaa 
aaa aaaa aaa aaaaaaaaaa aa a aaaaaaaa a aa aaa aaaaaaaaa aa aaa aaaaa aa aa  
 

What you should learn 
How to understand the 
notation for a function of 
several variables 

What you should learn 
How to sketch the graph 
of a function of two 
variables 
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The graph of z = f(x, y) is a surface whose projection onto the   

xy-plane is                  aa aaa aaaaaa aa a                 . To each 

point (x, y) in D there corresponds            a aaaaa aaa aa aa aa aa 

aaaaaaa                     , and conversely, to each point (x, y, z) on 

the surface there corresponds                 aaa aaa aa aa a               . 

 
To sketch a surface in space by hand, it helps to use            aaaaa 

aa aaaaaa aaaaaaaa aa aaa aaaaaaaaaa aaaaaa                                . 

 
 
III.  Level Curves  (Pages 889−891) 
 
A second way to visualize a function of two variables is to use a  

               aaaaaa aaaaa                   in which the scalar z = f(x, y) is 

assigned to the point (x, y). A scalar field can be characterized by  

            aaaaa aaaaaa            or               aaaaa aaaaa             along 

which the value of f(x, y) is                  aaaaaaaa                   . 

 
Name a few applications of level curves. 
 
aaaaaaa aaaa aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaaaa 
aaaaaaaaaaaaaa aaaaaaa aaa aaaaaaaaaaaaaaaaaaaaa aaaa 
 
 
 
 
A contour map depicts                    aaa aaaaaaaaa aa a aaaa aaaaaaa 

aa a aaa a aa aaa aaaaaaa aaaaaaa aaaaa aaa                         . Much 

space between level curves indicates that                     a aa aaaaaaa 

aaaaaa                        , whereas little space indicates            a aaaaa 

aaaaaa aa a                            . 

 
 
What is the Cobb-Douglas production function? 
 
aaa aaaaaaaaaaaa aaaaaaaaaa aaaaaaaa aa aaaa aa aaaaaaaaa aa a 
aaaaa aa aaaaaaaaa aaa aaaaaa aa aaaaa aaaaaaaa aa aaaaaaa 
aaaaaaa aa aaaaa aaa aaaaaaaa  
 
 
 

What you should learn 
How to sketch level 
curves for a function of 
two variables 
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Let x measure the number of units of labor and let y measure the 
number of units of capital. Then the number of units produced is 
modeled by the function 
 
        aaaa aa a aaaaaaaa aaaaa a aaa a aaa aaaaaaaaa a a a a a     a  
 
Example 3: A manufacturer estimates that its production 

(measured in units of a product) can be modeled 
by 0.3 0.7( , ) 400f x y x y= , where the labor x is 
measured in person-hours and the capital y is 
measured in thousands of dollars. What is the 
production level when x = 500 and y = 200? 

 aaaaaaaaaaaaa aaaaaaa aaaaa 
 
 
 
 
IV.  Level Surfaces  (Pages 891−892) 
 
The concept of a level curve can be extended by one dimension 

to define a                      aaaaa aaaaaaa                       . If f is a 

function of three variables and c is a constant, the graph of the 

equation f(x, y, z) = c is                                 a aaaaa aaaaaaa aa 

aaa aaaaaaaa a                                 . 

 
 
V.  Computer Graphics  (Pages 892−893) 
 
The problem of sketching the graph of a surface can be 

simplified by                 aaaaa a aaaaaaaa                   . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to sketch level 
curves for a function of 
three variables 

What you should learn 
How to use computer 
graphs to graph a 
function of two variables
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 13.2    Limits and Continuity  
 
Objective: In this lesson you learned how to find a limit and 

determine continuity. 
 
 
I.  Neighborhoods in the Plane  (Page 898) 
 
Using the formula for the distance between two points (x, y) and 

(x0, y0) in the plane, you can define the δ-neighborhood about        

(x0, y0) to be         aaa aaaa aaaaaaaa aa aaa aa aaaa aaaa a          . 

When this formula { }2 2
0 0( , ) : ( ) ( )x y x x y y δ− + − <  

contains the less than inequality, <, the disk is called 

              aaaa               . When it contains the less than or equal to 

inequality, ≤, the disk is called                  aaaaaa                 . 

 
A point (x0, y0) in a plane region R is an interior point of R if 

there exists                      a aaaaaaaaaaaaaa aaaa aaa aa aaaa aaaa 

aaaaaaaa aa a                                       . If every point in R is an 

interior point, then R is           aa aaaa aaaaaa            . A point   

(x0, y0) is a boundary point of R if                               aaaaa aaaa 

aaaa aaaaaaaa aa aaa aa aaaaaaaa aaaaaa aaaaa  a a                 aaa 

aaaaaa aaaaaaa a                      . By definition, a region must 

contain its interior points, but it need not contain                      aa 

aaaaaaaa aaaaaa               . If a region contains all its boundary 

points, the region is             aaaaaa           . A region that contains 

some but not all of its boundary points is                          aaaaaaa 

aaaa aaa aaaaaa                         . 

 
 
II.  Limit of a Function of Two Variables  (Pages 899−901) 
 
Let f be a function of two variables defined, except possibly at 

(x0, y0), on an open disk centered at (x0, y0), and let L be a real 

number. Then 
0 0( , ) ( , )

lim ( , )
x y x y

f x y
→

=                  a              if for each 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
definition of a 
neighborhood in the 
plane 

What you should learn 
How to understand and 
use the definition of the 
limit of a function of two 
variables 
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ε > 0 there corresponds               a a a a                such that 

( , )f x y L ε− <  whenever 2 2
0 00 ( ) ( )x x y y δ< − + − < . 

 
For a function of two variables, the statement 0 0( , ) ( , )x y x y→  

means                           aaaa aaa aaaaa aaa aa aa aaaaaaa aa 

aaaaaaaa aaa aa aaaa aaa aaaaaaaaa                              . If the 

value of 
0 0( , ) ( , )

lim ( , )
x y x y

f x y
→

 is not the same for all possible 

approaches, or paths, to (x0, y0),                aaa aaaaa aaaa aaa 

aaaaa                 . 

 

Example 1: Evaluate 
2

( , ) (4, 1)

16lim
3 4x y

x y
x y→ −

+
−

. 

 a 
 
 
 
III.  Continuity of a Function of Two Variables  (Pages 
902−903) 
 
A function f of two variables is continuous at a point (x0, y0) in 

an open region R if                     aaaa aa aa aaaaa aa aaa aaaaa aa 

aaaa aa aa aaa aa aaaaaaaaaa aaa a                                               . 

The function f is             aaaaaaaaaa aa aaa aaaa aaaaaa a           if 

it is continuous at every point in R. 

 
Discuss the difference between removable and nonremovable 
discontinuities. 
 
aaaaaaa aaaa aaaa 
 
 
 
If k is a real number and f and g are continuous at (x0, y0), then 
the following functions are continuous at (x0, y0). 
 
1.  aaaaaa aaaaaaaaa   aa 
 
2.  aaa aaa aaaaaaaaaaa   a a a 
 
3.  aaaaaaaa   aa 
 
4.  aaaaaaaaa   aaaa aa aaaaa aaa a a 

What you should learn 
How to extend the 
concept of continuity to a 
function of two variables 
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If h is continuous at (x0, y0) and g is continuous at h(x0, y0), then 

the composite function given by ( )( , ) ( ( , ))g h x y g h x y=o  is  

             aaaaaaaaaa aa aaa aa                                   . That is, 

0 0
0 0( , ) ( , )

lim ( ( , )) ( ( , ))
x y x y

g h x y g h x y
→

= . 

 
 
IV.  Continuity of a Function of Three Variables  (Page 904) 
 
A function f of three variables is continuous at a point                  

(x0, y0, z0) in an open region R if                                   aaaa aa aa 

aa aaaaaaa aaa aa aaaaa aa aaa aaaaa aa      aaaa aa aa    aa    aaa 

aa aa aaaaaaaaaa aaa aa aa                                                           . 

That is, 
0 0 0

0 0 0( , , ) ( , , )
lim ( , , ) ( , , )

x y z x y z
f x y z f x y z

→
= . The function f is          

                       aaaaaaaaaa aa aaa aaaa aaaaaa a                     if it is 

continuous at every point in R. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to extend the 
concept of continuity to a 
function of three 
variables 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 13.3    Partial Derivatives 
 
Objective: In this lesson you learned how to find and use a partial 

derivative. 
 
 
I.  Partial Derivatives of a Function of Two Variables 
     (Pages 908−911) 
 
The process of determining the rate of change of a function f 

with respect to one of its several independent variables is called 

              aaaaaaa aaaaaaaaaaaaaaa                    , and the result is 

referred to as the          aaaaaaa aaaaaaaaaa              of f with 

respect to the chosen independent variable. 

 
If ( , )z f x y= , then the first partial derivatives of f with respect 
to x and y are the functions xf  and yf , defined by 
 

     
0

( , ) limx x
f x y

Δ →
=  

 

     
0

( , ) limy y
f x y

Δ →
=  

 
provided the limit exists. 
 
This definition indicates that if ( , )z f x y= , then to find xf , you 

consider                           a aaaaaaaa aaa aaaaaaaaaaaaa aaaa aaaa 

aa a                          . Similarly, to find yf , you consider            a 

aaaaaaaa aaa aaaaaaaaaaaaa aaaa aaaaaaa aa a                              . 

 
List the equivalent ways of denoting the first partial derivatives 
of ( , )z f x y=  with respect to x. 
 
           aaaaa     aaaaa aa     aa     aaaaaaaaa aaa  
 
List the equivalent ways of denoting the first partial derivatives 
of ( , )z f x y=  with respect to y. 
 
           aaaaa     aaaaa aa     aa     aaaaaaaaa aaa  
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find and use 
partial derivatives of a 
function of two variables 

             aaa a aaa aa a aaaa aaa 

aaa 

            aaaa a a aaa a aaaa aaa 

aaa 
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The values of the first partial derivatives at the point (a, b) are 
denoted by 
 

     
( , )a b

z
x

∂ =
∂

        aaaaa aa            and           
( , )a b

z
y

∂ =
∂

        aaa aa       

 
Example 1: Find ∂z/∂x for the function 

2 2 220 2 3 5z x xy x y= − + + . 
 aaaaa a aaa a aa aaaaaa 
 
 
 
For the function ( , )z f x y= , if y = y0, then 0( , )z f x y=  

represents the curve formed by intersecting                   aaa aaaaa 

a a aaa aaa aaaaaaa a a aaaa aa                  . On this curve, the 

partial derivative fx(x0, y0) represents                aaa aaaaa aa aaaa 

aaaaa aa aaa aaaaa aaa aa aaaa aaa                                               . 

Informally, the values of /f x∂ ∂  and /f y∂ ∂  at the point                   

(x0, y0, z0) denote                            aaa aaaaaa aa aaa aaaaaaa aa 

aaa aa aaa aaaaaaaaaaaa                                          , respectively. 

 
Example 2: Find the slope of the surface given by 

2 2 220 2 3 5z x xy x y= − + +  at the point (1, 1, 26) in 
the y-direction. 

 aa 
 
 
 
 
 
II.  Partial Derivatives of a Function of Three or More  
      Variables  (Pages 911−912) 
 
The function ( , , )w f x y z=  has           aaaaa           partial 

derivatives, each of which is formed by                  aaaaaaa aaa aa 

aaa aaaaaaaaa aaaaaaaa                                  . 

 
The partial derivative of w with respect to x is denoted by  

         aaaaa aa a aaa aa aa                  . To find the partial 

derivative of w with respect to x, consider             a aaa a             to 

be constant and differentiate with respect to           a           . 

What you should learn 
How to find and use 
partial derivatives of a 
function of three or more 
variables 
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III.  Higher-Order Partial Derivatives  (Pages 912−913) 
 
As with ordinary derivatives, it is possible to take        aaaaaaa 

aaaaaa aaa aaaaaa                     partial derivatives of a function of 

several variables, provided such derivatives exist. Higher-order 

derivatives are denoted by                      aaa aaaaa aa aaaaa aaa 

aaaaaaaaaaaaaaa aaaaaa                    . 

 

The notation 
2 f
x y

∂
∂ ∂

 indicates to differentiate first with respect to 

         a         and then with respect to         a          . 
 

The notation f
y x

∂ ∂⎛ ⎞
⎜ ⎟∂ ∂⎝ ⎠

 indicates to differentiate first with respect 

to          a         and then with respect to         a          . 
 
The notation y xf  indicates to differentiate first with respect to 
         a         and then with respect to         a          . 
 
The cases represented in the three examples of notation given 

above are called                aaaaa aaaaaaa aaaaaaaaaaa                 . 

 
Example 3: Find the value of (2, 3)x yf −  for the function 

2 2 2( , ) 20 2 3 5f x y x xy x y= − + + . 
 aaaa 
 
 
 
 
 
If f is a function of x and y such that xyf  and yxf  are continuous 

on an open disk R, then, for every (x, y) in R,  

( , )xyf x y =                   aa      aa aa                 . 

 
 
 
 
 
 
 
 
 

What you should learn 
How to find higher-order 
partial derivatives of a 
function of two or three 
variables 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 13.4    Differentials 
 
Objective: In this lesson you learned how to find and use a total 

differential and determine differentiability. 
 
 
I.  Increments and Differentials  (Page 918) 
 
The increments of x and y are           aa aaa aa           , and the 

increment of z is given by                      aa a aaa a aaa a a aaa a 

aaaa aa                        . 

 
If ( , )z f x y=  and Δx and Δy are increments of x and y, then the 

differentials of the independent variables x and y are         aa a aa 

aaa aa a aa                      , and the total differential of the 

dependent variable z is 

. 

 
 
II.  Differentiability  (Page 919) 
 
A function f given by ( , )z f x y=  is differentiable at (x0, y0) if 

Δz can be written in the form 

 

where both ε1 and ε2→0 as (Δx, Δy)→(0, 0). The function f is  

             aaaaaaaaaaaaaa aa a aaaaaa a                if it is 

differentiable at each point in R. 

 
If f is a function of x and y, where fx and fy are continuous in an 

open region R, then f is              aaaaaaaaaaaaaa aa a                    . 

 
 
III.  Approximation by Differentials  (Pages 920−922) 
 
The partial derivatives ∂z/∂x and ∂z/∂y can be interpreted as            

aaaaaa aa aaa aaaaaaa aa aaa aa aaa aaaaaaaaaaaa                       . 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
concepts of increments 
and differentials 

What you should learn 
How to extend the 
concept of 
differentiability to a 
function of two variables 

What you should learn 
How to use a differential 
as an approximation 
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This means that z zdz x y
x y

∂ ∂= Δ + Δ
∂ ∂

 represents                       aaa 

aaaaaa aa aaaaaa aa a aaaaa aaaa aa aaaaaaa aa aaa aaaaaaa aa 

aaa aaaaa aaa aa aaaa aaa                         . Because a plane in 

space is represented by a linear equation in the variables x, y, and 

z, the approximation of Δz by dz is called a                              aaa 

aaaaaaaaaaaaa                 . 

 
If a function of x and y is differentiable at (x0, y0), then              aa 

aa aaaaaaaaaa aa aaa aa                                            . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 13.5   Chain Rules for Functions of Several Variables 
 
Objective: In this lesson you learned how to use the Chain Rules 

and find a partial derivative implicitly. 
 
 
I.  Chain Rules for Functions of Several Variables 
     (Pages 925−929) 
 
Let ( , )w f x y= , where f is a differentiable function of x and y. 

The Chain Rule for One Independent Variable states that       aa a 

a aaaa aaa a a aaaaa aaaaa a aaa a aaa aaaaaaaaaaaaaa aaaaaaaaa 

aa aa aaaa a aa a aaaaaaaaaaaaaa aaaaaaaa aa aa aaa        aaaaa a 

aaaaaaaaaaaaaa a aaaaaaaaaaaaaa                                         . 

 
Example 1: Let 32 3w xy xy= + , where 1 2x t= −  and 

2siny t= . Find dw/dt. 
 aaaaa a aaa a aaa aaaaaa a a aaaaaaaa a 
 
 
 
 
 
 
 
Let ( , )w f x y= , where f is a differentiable function of x and y. 

The Chain Rule for Two Independent Variables states that        a 

a a aaaa aa aaa a a aaaa aa             aaaa aaaa aaa aaaaa aaaaaaaa 

aaaaaa aaaaaa aaaaaa aaa aaaaa         aaa aaaaaa aaaa aaaaa aaa 

aaaaa aaaaa        aaa aaa aaaaa aa        aaaaa a aaaaaaaaaaaaaa a 

aaaaaaaaaaaaaa                aaa                                            aaaaa a 

aaaaaaaaaaaaaa a aaaaaaaaaaaaaa                                        . 

 
 
II.  Implicit Partial Differentiation  (Pages 929−930) 
 
If the equation ( , ) 0F x y =  defines y implicitly as a 

differentiable function of x, then dy
dx

=       aaaaa        aaa aa        , 

( , ) 0yF x y ≠ . If the equation ( , , ) 0F x y z =  defines z implicitly as 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use the Chain 
Rules for functions of 
several variables 

What you should learn 
How to find partial 
derivatives implicitly 
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a differentiable function of x and y, then                                                    

z
x

∂ =
∂

             aaaaa aa aaaaaaa aa aa                         , and  

z
y

∂ =
∂

                aaaaa aa aaaaaaa aa aa                      , 

( , , ) 0zF x y z ≠ . 

 
Example 2: Find dy/dx, given 2 22 2 0x xy y x y+ + − − = . 
 aaaaa a aa aa a a a aaaaa a aa a aa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 13.6    Directional Derivatives and Gradients 
 
Objective: In this lesson you learned how to find and use a 

directional derivative and a gradient. 
 
 
I.  Directional Derivative  (Pages 933−935) 
 
Let f be a function of two variables x and y, and let 

cos sinθ θ= +u i j  be a unit vector. Then the                aaaaaaaaaa 

aaaaaaaaaa aa a aa aaa aaaaaaaaa aa a                    , denoted by 

Duf, is 
0

( cos , sin ) ( , )( , ) lim
t

f x t y t f x yD f x y
t

θ θ
→

+ + −=u , 

provided this limit exists. 

 
A simpler working formula for finding a directional derivative 

states that if f is a differentiable function of x and y, then the 

directional derivative of f in the direction of the unit vector 

cos sinθ θ= +u i j  is     aaaaa aa a aaaa aa a a a aaaa aa aaa a    . 

 
 
II.  The Gradient of a Function of Two Variables 
      (Pages 936−937) 
 
Let ( , )z f x y=  be a function of x and y such that xf  and yf  

exist. Then the gradient of f, denoted by            aaaaa aa          , 

is the vector                   aa a aaa aaa a aaaa aaa                          . 

Note that for each (x, y), the gradient ∇f(x, y) is a vector in      

aaa aaaaaa aaa a aaaaaa aa aaaaa                       . 

 
If f is a differentiable function of x and y, then the directional 

derivative of f in the direction of the unit vector u is 

                 aaaaa aa a aaaaa aa a a              . 

 
 
III.  Applications of the Gradient  (Pages 937−940) 
 
In many applications, you may want to know in which direction 

to move so that f(x, y) increases most rapidly. This direction is 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find and use 
directional derivatives of 
a function of two 
variables 

What you should learn 
How to find the gradient 
of a function of two 
variables 

What you should learn 
How to use the gradient 
of a function of two 
variables in applications 
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called                aaa aaaaaaaaa aa aaaaaaaa aaaaaa                   , 

and it is given by the                    aaaaaaaa                      . 

 
Let f be differentiable at the point (x, y). State three properties of 
the gradient at that point. 
 
1.  aa aaaaa aa a aa aaaa aaaaaa aa a a aaa aaa aa 
 
2.  aaa aaaaaaaaa aa aaaaaaa aaaaaaaa aa a aa aaaaa aa aaaaa aaa 
aaa aaaaaaa aaaaa aa aaaaaa aa aa aaaaaaa aaaaa 
 
3.  aaa aaaaaaaaa aa aaaaaaa aaaaaaaa aa a aa aaaaa aa aaaaaa 
aaa aaa aaaaaaa aaaaa aa aaaaaa aa aa aaaaaaaa aaaaa 
 
If f is differentiable at (x0, y0) and ∇f(x0, y0) ≠ 0, then ∇f(x0, y0) is 

                  aaaaaa aa aaa aaaaa aaaaa aaaaaaa aaa aa                    . 

 
 
IV.  Functions of Three Variables  (Page 941) 
 
Let f be a function of x, y, and z, with continuous first partial 

derivatives. The directional derivative of f in the direction of a 

unit vector a b c= + +u i j k  is given by 

          aaaaa aa aa a aaaaa aa aaaa aa aa a aaaaa aa aa              . 

 
The gradient of f is defined to be               aaaaa aa aa a aaaa aa 

aaa a aaaa aa aaa a aaaa aa aaa                 . 

 
Properties of the gradient are as follows. 
 
1.  aaaaaa aa aa a aaaaa aa aa a a 
 
2.  aa aaaaa aa aa a aa aaaa aaaaaa aa aa a a aaa aaa aa 
 
3.  aaa aaaaaaaaa aa aaaaaaa aaaaaaaa aa a aa aaaaa aa                  
aaaaa aa aaa aaa aaaa aaaaa aa aaaaaa aa aa aa aaaaaaa aa aaaaa 
 
4.  aaa aaaaaaaaa aa aaaaaaa aaaaaaaa aa a aa aaaaa aa                        
aaaaaa aa aaa aaa aaaaaaa aa aaaaaa aa aa aa aaaaaaaa aa aaaaa 
 
 
 
 
 
 

Homework Assignment 
Page(s) 
 
Exercises 

What you should learn 
How to find directional 
derivatives and gradients 
of functions of three 
variables 
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Section 13.7    Tangent Planes and Normal Lines 
 
Objective: In this lesson you learned how to find and use a 

directional derivative and a gradient. 
 
 
I.  Tangent Plane and Normal line to a Surface 
     (Pages 945−949) 
 
For a surface S given by ( , )z f x y= , you can convert to the 

general form by defining F as F(x, y, z) =          aa aa a a            . 

Because ( , ) 0f x y z− = , you can consider S to be                 aaa 

aaaaa aaaaaaa aa a aaaaa aa aaaa aa aa a a                                  . 

 
Example 1: For the function given by 

2 2 2( , , ) 12 3 4F x y z x y z= − + − , describe the level 
surface given by ( , , ) 0F x y z = . 

 aaa aaaaa aaaaaaa aaa aa aaaaaaa aa aaa a aa a aaa a 
aaa aaaaa aa a aaaaaaaaaaa aa aaa aaaaa aaaa aaa    
aaaaaa aa aaa aaaaa 

 
 
Let F be differentiable at the point P(x0, y0, z0) on the surface S 

given by F(x, y, z) = 0 such that ∇F(x0, y0, z0) ≠ 0. 

1. The plane through P that is normal to ∇F(x0, y0, z0) is called 

aaa aaaaaaa aaaaa aa a aa a                                 . 

2. The line through P having the direction of ∇F(x0, y0, z0) is 

called               aaa aaaaaa aaaa aa a aa a                        . 

 
If F is differentiable at (x0, y0, z0), then an equation of the tangent 

plane to the surface given by F(x, y, z) = 0 at (x0, y0, z0) is  

aaaaaa aaa aaaaa a aaa a aaaaaa aaa aaaaa a aaa a aaaaaaa aa 
 
 
To find the equation of the tangent plane at a point on a surface 
given by ( , )z f x y= , you can define the function F by 

( , , ) ( , )F x y z f x y z= − . Then S is given by the level surface 
( , , ) 0F x y z = , and an equation of the tangent plane to S at the 

point (x0, y0, z0) is  
 
         aaaaaa aaaaa a aaa a aaaaaa aaaaa a aaa a aa a aaa a a 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find equations of 
tangent planes and 
normal lines to surfaces 
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II.  The Angle of Inclination of a Plane  (Pages 949−950) 
 
Another use of the gradient ( , , )F x y z∇  is                aa aaaaaaaaa 

aaa aaaaa aa aaaaaaaaaaa aa aaa aaaaaaa aaaaa aa a aaa               . 

The angle of inclination of a plane is defined to be                 aaa 

aaaaa a aa a a a aaaa aaaaaaa aaa aaaaa aaaaa aaa                    aaa      

aaaaaaaa                  . The angle of inclination of a horizontal 

plane is defined to be           aaaa            . Because the vector k is 

normal to the xy-plane, you can use the formula for the cosine of 

the angle between two planes to conclude that the angle of 

inclination of a plane with normal vector n is given by     aaa a a 

aa a aa a aaaaaa aaaaaa a aa a aa a aaaaa                        . 

 
 
III.  A Comparison of the Gradients ∇f(x, y) and ∇F(x, y, z) 
        (Page 950) 
 
If F is differentiable at (x0, y0, z0) and ∇F(x0, y0, z0) ≠ 0, then 

∇F(x0, y0, z0) is                 aaaaaa                 to the level surface 

through (x0, y0, z0). 

 
When working with the gradients ∇f(x, y) and ∇F(x, y, z), be sure to 

remember that ∇f(x, y) is a vector in             aaa aaaaaaaa               and 

∇F(x, y, z) is a vector in                     aaaaa                    . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to find the angle of 
inclination of a plane in 
space 

What you should learn 
How to compare the 
gradients ∇f(x, y) and 
∇F(x, y, z) 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 13.8    Extrema of Functions of Two Variables 
 
Objective: In this lesson you learned how to find absolute and 

relative extrema. 
 
 
I.  Absolute Extrema and Relative Extrema  (Pages 954−956) 
 
Let f be a continuous function of two variables x and y defined 

on a closed bounded region R in the xy-plane. The Extreme 

Value Theorem states that             aaa  aaaaa aa aa aaaaa aaa aaaa 

aa a aaaaa a aaaaa aa a aaaaaaa aaaaa aaa aaa aaaaa aa aa aaaaa 

aaa aaaaa aa a aaaaa a aaaaa aa a aaaaaaa aaaaa                        . 

 
Let f be a function defined on a region R containing (x0, y0). The 

function f has a relative maximum at (x0, y0) if   aaaa aa a aaaaa 

aaa aaa aaa aaa aa aa aa aaaa aaaaaaaa aaaa aaa                             . 

The function f has a relative minimum (x0, y0) if  aaaa aa a aaaaa 

aaa aaa aaa aaa aa aa aa aaaa aaaa aaaaaaaaaaa                              . 

 
To say that f has a relative maximum at (x0, y0) means that the 

point (x0, y0, z0) is                           aa aaaaa aa aaaa aa aaa aaaaaa 

aaaaaa aa aaa aaaaa aa a a aaaa aa                               . 

 
Let f be defined on an open region R containing (x0, y0). The 

point (x0, y0) is a critical point of f if one of the following is true. 

1.  aaaaaa aaa a a aaa aaaaaa aaa a a 

2.  aaaaaa aaa aa aaaaaa aaa aaaa aaa aaaaa 

 
If f has a relative extremum at (x0, y0) on an open region R, then 

(x0, y0) is a                  aaaaaaaa aaaaa aa a                          . 

 
Example 1: Find the relative extrema of 

2 2( , ) 3 2 36 24 9f x y x y x y= + − + − . 
 aaaaaaaa aaaaaaa aa aaaa aaa a aaaa 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find absolute and 
relative extrema of a 
function of two variables 
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II.  The Second Partials Test  (Pages 957−959) 
 
The critical points of a function of two variables do not always 

yield relative maximum or relative minima. Some critical points 

yield                  aaaaaa aaaaaa                 , which are neither 

relative maxima nor relative minima. 

 
For the Second-Partials Test for Relative Extrema, let f have 
continuous second partial derivatives on an open region 
containing (a, b) for which fx(a, b) = 0 and fy(a, b) = 0. To test 
for relative extrema of f, consider the quantity  
          2( , ) ( , ) [ ( , )]x x y y x yd f a b f a b f a b= − . 

1. If d > 0 and fxx(a, b) > 0, then f has                   a aaaaaaaa 

aaaaaaa aa aaa aa                 . 

2. If d > 0 and fxx(a, b) < 0, then f has                   a aaaaaaaa 

aaaaaaa aa aaa aa                 . 

3. If d < 0, then         aaa aa aaaa aaa aa aaa aaaaa             . 

4. If d = 0, then            aaa aaaa aa aaaaaaaaaaaa            . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to use the Second 
Partials Test to find 
relative extrema of a 
function of two variables 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 13.9    Applications of Extrema of Functions of Two 
   Variables 

 
Objective: In this lesson you learned how to solve an optimization 

problem and how to use the method of least squares. 
 
I.  Applied Optimization Problems  (Pages 962−963) 
 
Give an example of a real-life situation in which extrema of 
functions of two variables play a role. 
 
aaaaaaa aaaa aaaa 
 
 
 
Describe the process used to optimize the function of two or 
more variables. 
 
aaaaaaa aaaa aaaa 
 
 
 
 
 
 
In many applied problems, the domain of the function to be 

optimized is a closed bounded region. To find minimum or 

maximum points, you must not only test critical points, but also 

                            aaaaaaaa aaa aaaaaa aa aaa aaaaaaaa aa aaaaaa 

aa aaa aaaaaaaa                                           . 

 
 
II.  The Method of Least Squares  (Pages 964−966) 
 
In constructing a model to represent a particular phenomenon, 

the goals are                 aaaaaaaaa aaa aaaaaaaa                            . 

 
As a measure of how well the model y = f(x) fits the collection of 

points {(x1, y1), (x2, y2), . . . , (xn, yn)},                         aaa aaa aaa 

aaa aaaaaaa aa aaa aaaaaaaaaaa aaaaaaa aaa aaaaaa aaaaaaaa aaa 

aaa aaaaaa aaaaa aa aaa aaaaa                  . This sum is called the 

                 aaa aa aaa aaaaaaa aaaaaa                and is given by  

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to solve 
optimization problems 
involving functions of 
several variables 

What you should learn 
How to use the method of 
least squares 
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. Graphically, S can be 

interpreted as                                aaa aaa aa aaa aaaaaaa aa aaa 

aaaaaaaa aaaaaaaaa aaaaaaa aaa aaaaa aa a aaa aaa aaaaa aaaaaa 

aa aaa aaaaa                        . If the model is a perfect fit, then                      

S =            a             . However, when a perfect fit is not feasible, 

you can settle for a model that               aaaaaaaaa a                    . 

 
The linear model that minimizes S is called                 aaa aaaaa aaaaaaa 

aaaaaaaaaa aaaa                           . 

 
The least squares regression line for {(x1, y1), (x2, y2), . . . ,     

(xn, yn)} is given by                  a a aa a a                  , where 

1 1 1
2

2

1 1

n n n

i i i i
i i i

n n

i i
i i

n x y x y
a

n x x

= = =

= =

−
=

⎛ ⎞
− ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑
   and   

1 1

1 n n

i i
i i

b y a x
n = =

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ . 

 
Example 1: Find the least squares regression line for the data 

in the table. 
 

x 1 3 4 8 11 12 
y 16 21 24 27 29 33 

 
  a a aaaaa a aaaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 13.10 Lagrange Multipliers 
 
Objective: In this lesson you learned how to solve a constrained 

optimization problem using a Lagrange multiplier. 
 
 
I.  Lagrange Multipliers  (Pages 970−971) 
 
The             aaaaaa aa aaaaaaaa aaaaaaaaaaa             offers a way 

to solve constrained optimization problems. 

 

Let f and g have continuous first partial derivatives such that f has 

an extremum at a point (x0, y0) on the smooth constraint curve                

g(x, y) = c. Lagrange’s Theorem states that if ∇g(x0, y0) ≠ 0, then 

there is a real number λ such that         aaaaaa aaa a aaaaaa aaa        . 

 

The scalar λ, the lowercase Greek letter lambda, is called a  

              aaaaaaaa aaaaaaaaaa                  . 

 

Let f and g satisfy the hypothesis of Lagrange’s Theorem, and let 

f have a minimum or maximum subject to the constraint  

g(x, y) = c. To find the minimum or maximum of f, use the 

following steps. 

1.  aaaaaaaaaaaaaa aaaaa aaa aaaaaaaaa aaaaa aa a aaaaaa aa aaa 

aaaa aa a a aa aaaaaaa aaa aaaaaaaaa aaaaaa aa 

aaaaaaaaaaaaaaaa aa a aaaaaa aaaaaaaa aa a aaaaaa aaaaaaa aa a 

a 

 

 

 

2.  aaaaaaaa a aa aaaa aaaaaaaa aaaaa aaaaaaaa aa aaa aaaaa 

aaaaa aaa aaaaaaa aaaaa aaaaaa aaa aaaaaaa aa a aaaaaaa aa aaa 

aaaaaaaaaa aaaa aa a aa aaa aaa aaaaaaaa aaaaa aaaaaa aaa 

aaaaaaa aa a aaaaaaa aa aaa aaaaaaaaaa aaaa aa a aa 

 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
Method of Lagrange 
Multipliers 
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II.  Constrained Optimization Problems  (Pages 972−974) 
 
Economists call the Lagrange multiplier obtained in a production 

function the                 aaaaaaaa aaaaaaaaaaaa aa aaaaa                , 

which tells the number of additional units of product that can be 

produced if one additional dollar is spent on production. 

 
 
III.  The Method of Lagrange Multipliers with Two  
        Constraints  (Page 975) 
 
For an optimization problem involving two constraint functions 

g and h, you need to introduce                       a aaaaaa aaaaaaaa 

aaaaaaaaaa a                 , and then solve the equation  

                        aa a aaa a aaa                . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to use Lagrange 
multipliers to solve 
constrained optimization 
problems 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to use the Method 
of Lagrange Multipliers 
with two constraints 
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Chapter 14 Multiple Integration 
 
Section 14.1       Iterated Integrals and Area in the Plane 
 
Objective: In this lesson you learned how to evaluate an iterated 

integral and find the area of a plane region. 
 
 
I.  Iterated Integrals  (Pages 984−985) 
 
To extend definite integrals to functions of several variables, you 

can apply the Fundamental Theorem of Calculus to one variable 

while               aaaaaaa aaa aaaaa aaaaaaaa aaaaaaaa                    . 

 
An “integral of an integral” is called a(n)      aaaaaaaa aaaaaa      . 

The                aaaaaa                limits of integration can be 

variable with respect to the outer variable of integration. The  

              aaaaaaa                 limits of integration must be constant 

with respect to both variables of integration. The limits of 

integration for an iterated integral identify two sets of boundary 

intervals for the variables, which determine the              aaaaaa aa 

aaaaaaaaaaa a                of the iterated integral. 

 

Example 1: Evaluate 
0

3 0
(6 2 )

y

x y dx dy
−

−∫ ∫ . 

a 
 
 
 
 
II.  Area of a Plane Region  (Pages 986−989) 
 
One of the applications of the iterated integral is        aaaaaaa aaa 

aaaa aa a aaaaa aaaaaa                            . 

 
When setting up a double integral to find the area of a region in a 

plane, placing a representative rectangle in the region R helps 

determine both          aaa aaaaa aaa aaa aaa aa aaaaaaaaaaa         . 

A vertical rectangle implies the order                   aa aa                , 

with the inside limits corresponding to the                     aaaaa aaa 

aaaaa aaaaaa aa aaa aaaaaaaaa                  . This type of region is 

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
How to evaluate an 
iterated integral 

What you should learn 
How to use an iterated 
integral to find the area 
of a plane region 
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called               aaaaaaaaaa aaaaaa                  , because the 

outside limits of integration represent the                     aaaaaaaa 

aaaaa a a a aaa a a a                       . Similarly, a horizontal 

rectangle implies the order             aa aa               , with the 

inside limits corresponding to the                    aaaa aaa aaaaa aaa 

aa aaa aaaaaaaaa                  . This type of region is called     aaaa 

aaaaaaaa aaaaaa                   , because the outside limits represent 

the                aaaaaaaaaa aaaaa a a a aaa a a a                . 

 
Example 2: Use a double integral to find the area of a 

rectangular region for which the bounds for x are 
6 1x− ≤ ≤  and the bound for y are 3 8y− ≤ ≤ . 

aa aaaaaa aaaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 14.2    Double Integrals and Volume 
 
Objective: In this lesson you learned how to use a double integral to 

find the volume of a solid region. 
 
 
I.  Double Integrals and Volume of a Solid Region   
     (Pages 992−994) 
 
If f is defined on a closed, bounded region R in the xy-plane, then 

the                 aaaaaa aaaaaaaa aa a aaaa a                 is given by 

0
1

( , ) lim ( , )
n

i i i
iR

f x y dA f x y A
Δ →

=

= Δ∑∫∫ , provided the limit exists. If 

the limit exists, then f is                aaaaaaaaaa               over R. 

 
A double integral can be used to find the volume of a solid 

region that lies between                                aaa aaaaaaaa aaa aaa 

aaaaaaa aaaaa aa a a aaaa aa                                             . 

 
If f is integrable over a plane region R and f(x, y) ≥ 0 for all (x, y) 

in R, then the volume of the solid region that lies above R and 

below the graph of f is defined as . 

 
 
II.  Properties of Double Integrals  (Page 994) 
 
Let f and g be continuous over a closed, bounded plane region R, 

and let c be a constant. 

 

1.  ( , )
R

cf x y dA =∫∫        a       
R
∫∫                aaaa aa aa              . 

 

2.  [ ( , ) ( , )]
R

f x y g x y dA± =∫∫
R
∫∫    aaaa aaa      a  

R
∫∫ aaaa aa aa       . 

 

3.  ( , ) 0
R

f x y dA ≥∫∫ , if            aaaa aa a a            . 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use a double 
integral to represent the 
volume of a solid region 

What you should learn 
How to use properties of 
double integrals 
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4.  ( , ) ( , )
R R

f x y dA g x y dA≥∫∫ ∫∫ , if          a aa a aaaa aa            . 

 

5.  
1 2

( , ) ( , ) ( , )
R R R

f x y dA f x y dA f x y dA= +∫∫ ∫∫ ∫∫ , where R is         aa 

aaaaa aa aaa aaaaaaaaaaaaaa aaaaaaaaaa aa aaa aa                        . 
 
 
III.  Evaluation of Double Integrals  (Pages 995−999) 
 
Normally, the first step in evaluating a double integral is           a 

aaaaaaa aa aa aa aaaaaaaa aaaaaaaa                                   . 

 
Explain the meaning of Fubini’s Theorem. 
 
aaaaaaaa aaaaaaa aaaaaa aaaa aa a aa a aaaaaaaaaa aa 
aaaaaaaaaaaa aaaaaa aaaaaa aaa a aa aaaaaaaaaa aa aa aaa aaaaaa 
aaaaaaaa aa a aa a aa aaaaa aa aa aaaaaaaa aaaaaaaaa 
 
 
 
 
In your own words, explain how to find the volume of a solid. 
 
aaaaaa aaaaa aaa aaaaaaaa aa aaa aaaaaaa aa aaa aaaa a a aaaa aa 
aaa aaaaaa aaa aaaaa aaaaaaa aaaa aaaaaa aaa aaaaaa a aa aaa 
aaaaaaaa aaa aaaaaaaaa aaa aaaaa aaa aaaaaa aa aaaaaaaaaaaa 
aaaaaaaa aaaaaaaa aaa aaaaaa aaaaaaaa aaaaa aaa aaaaa aaa 
aaaaaa aaaaaaaaaa aa aaa aaaaaa aaaaa 
 
 
 
 
IV.  Average Value of a Function  (Pages 999−1000) 
 
If f is integrable over the plane region R, then the             aaaaaaa 

aaaaa aa a aaaa a                     is 1 ( , )
R

f x y dA
A ∫∫ , where A is the 

area of R. 

 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to evaluate a double 
integral as an iterated 
integral 

What you should learn 
How to find the average 
value of a function over a 
region 
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Section 14.3    Change of Variables:  Polar Coordinates 
 
Objective: In this lesson you learned how to write and evaluate 

double integrals in polar coordinates. 
 
 
I.  Double Integrals in Polar Coordinates  (Pages 1004−1008) 
 
Some double integrals are much easier to evaluate in            aaaa 

aaaa               than in rectangular form, especially for regions 

such as                   aaaaaaaa aaaaaaa aaa aaaa aaaaaa                   . 

 
 
A polar sector is defined as                         a a aaaa aaa  a a a a 

aa a a a a aa                                            . 

 
 
Let R be a plane region consisting of all points (x, y) = 

( cos , sin )r rθ θ  satisfying the conditions 1 20 ( ) ( )g r gθ θ≤ ≤ ≤ , 

α θ β≤ ≤ , where 0 ( ) 2β α π≤ − ≤ . If g1 and g2 are continuous 

on [α, β] and f is continuous on R, then 

. 

 
 
If ( , )z f x y=  is nonnegative on R, then the integral 

2

1

( )

( )

( , ) ( cos , sin )
g

R g

f x y dA f r r r dr d
θβ

α θ

θ θ θ=∫∫ ∫ ∫  can be 

interpreted as the volume of                                aaa aaaaa aaaaaa 

aaaaaaa aaa aaaaa aa a aaa aaa aaaaaa a                                  . 

 
 
 
 
 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to write and 
evaluate double integrals 
in polar coordinates 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

y
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x

y

x



Section 14.4     Center of Mass and Moments of Inertia 267 

Larson/Edwards   Calculus 9e   Notetaking Guide 
Copyright © Cengage Learning. All rights reserved. 

Section 14.4    Center of Mass and Moments of Inertia 
 
Objective: In this lesson you learned how to find the mass of a 

planar lamina, the center of mass of a planar lamina, and 
moments of inertia using double integrals. 

 
 
I.  Mass  (Pages 1012−1013) 
 
If ρ is a continuous density function on the lamina (of variable 

density) corresponding to a plane region R, then the mass m of 

the lamina is given by . 

 
 
For a planar lamina, density is expressed as             aaaa aaa aaaa 

aaaaaaa aaaa                            . 

 
 
II.  Moments and Center of Mass  (Pages 1014−1015) 
 
Let ρ be a continuous density function on the planar lamina R. 

The moments of mass with respect to the x- and y-axes are        

Mx =  and  

My = . If m is the mass of the 

lamina, then the center of mass is . 

If R represents a simple plane region rather than a lamina, the 

point ( , )x y  is called the                aaaaaaaa              of the 

region. 

 
 
III.  Moments of Inertia  (Pages 1016−1017) 
 
The moments Mx and My used in determining the center of mass 

of a lamina are sometimes called the            aaaaa aaaaaaa           . 

about the x- and y-axes. In each case, the moment is the product 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to find the mass of a 
planar lamina using a 
double integral 

What you should learn 
How to find the center of 
mass of a planar lamina 
using double integrals 

What you should learn 
How to find moments of 
inertia using double 
integrals 
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of                    a aaaa aaaaa a aaaaaaaa                      . The second 

moment, or the moment of inertia of a lamina about a line, is a 

measure of                      aaa aaaaaaaa aa aaaaaa aa aaaaaa a aaaa 

aa aaaaaaaaaa aaaaaa                          . These second moments 

are denoted Ix and Iy, and in each case the moment is the product 

of                a aaaa aaaaa aaa aaaaa aa a aaaaaaaa                         . 

 

Ix =  and  

Iy = . The sum of the 

moments Ix and Iy is called the              aaa aa aaaaaaa             and 

is denoted by I0. 

 
The moment of inertia I of a revolving lamina can be used to 

measure its           aaaaaaa aaaaaa a             , which is given by  

            a a a aaa                , where ω is the angular speed, in 

radians per second, of the planar lamina as it revolves about a 

line. 

 
The radius of gyration r  of a revolving mass m with moment 

of inertia I is defined to be . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 14.5    Surface Area 
 
Objective: In this lesson you learned how to use a double integral to 

find the area of a surface. 
 
 
I.  Surface Area  (Pages 1020−1024) 
 
If f and its first partial derivatives are continuous on the closed 

region R in the xy-plane, then the area of the surface S given by   

z = f(x, y) over R is given by: 

  

 

 

 

 
 
 
 
List several strategies for performing the often difficult 
integration involved in finding surface area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use a double 
integral to find the area 
of a surface 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 14.6    Triple Integrals and Applications 
 
Objective: In this lesson you learned how to use a triple integral to 

find the volume, center of mass, and moments of inertia 
of a solid region. 

 
 
I.  Triple Integrals  (Pages 1027−1031) 
 
Consider a function f of three variables that is continuous over a 

bounded solid region Q. Then, encompass Q with a network of 

boxes and form the               aaaaa aaaaaaaa                  consisting 

of all boxes lying entirely within Q. The norm ||Δ|| of the 

partition is                       aaa aaaaaa aa aaa aaaaaaa aaaaaaaa aa 

aaa a aaaaa aa aaa aaaaaaaaa                           . 

 
If f is continuous over a bounded solid region Q, then the triple 

integral of f over Q is defined as 

, provided 

the limit exists. The volume of the solid region Q is given by 

. 

 
Let f be continuous on a solid region Q defined by a x b≤ ≤ , 

1 2( ) ( )h x y h x≤ ≤ , and 1 2( , ) ( , )g x y z g x y≤ ≤ , where h1, h2, g1, 

and g2 are continuous functions. Then, 

. 

 
To evaluate a triple iterated integral in the order dz dy dx,     aaaa 

aaaa a aaa a aaaaaaaa aaa aaa aaaaaaaaa aaaaaaaaaaaa aaaa aaaa 

a aaaaaaaa aaa aaa aaaaaa aaaaaaaaaaaa aaaaaaa aaa aaa aaaaa 

aaaaaaaaaaaa aaaaaaaaa aaaaaaaa aa a                                         . 

 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use a triple 
integral to find the 
volume of a solid region 
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Describe the process for finding the limits of integration for a triple 
integral. 
 
aa aaaa aaa aaaaaa aaa a aaaaaaaaaa aaaaa aa aaaaaaaaaaaa aa aa 
aaaaaaaaa aaaaaaaaa aaaaa aa aaaaaaaaa aaa aaaaaaaaa aaaaaaa aaaaa aaa 
aa aaaaaaaaa aa aaa aaaaa aaa aaaaaaaaaa aaaaa aa aaaaaaaaaa aaa aaaaa 
a aaaa aaa aaaaaaaaaa aaaaa aa aaa aaaaa aaa aaaaaaaaaa aaa aaa 
aaaaaaaaa aaaaa aaaaaa aa aaaaaaaaaaa aa aaa aaaaaaa aaaa aaa aaaaaa 
aaaaaaaaaa 
 
 
 
 
 
II.  Center of Mass and Moments of Inertia   
       (Pages 1032−1034) 
 
Consider a solid region Q whose density is given by the density 

function ρ. The center of mass of a solid region Q of mass m is 

given by ( , , )x y z  where  

m =  

 

Myz =  

 

Mxz =  

 

Mxy =  

 

x =  

 

y =  

 

z =  

 
 
 

What you should learn 
How to find the center of 
mass and moments of 
inertia of a solid region 
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The quantities Myz, Mxz, and Mxy are called the                        aaaa 

aaaaaaa                      of the region Q about the yz-, xz-, and xy-

planes, respectively. The first moments for solid regions are 

taken about a plane, whereas the second moments for solids are 

taken about a                 aaaa                   . The second moments 

(or moments of inertia) about the x-, y-, and z-axes are as 

follows. 

Moment of inertia about the x-axis:  Ix =  

 

Moment of inertia about the y-axis:  Iy =  

 

Moment of inertia about the z-axis:  Iz =  

 
 
For problems requiring the calculation of all three moments, 
considerable effort can be saved by applying the additive 
property of triple integrals and writing 
 

 
 
where 
 

Ixy =  

 

Ixz =  

 

Iyz =  
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 14.7    Triple Integrals in Cylindrical and Spherical 
     Coordinates 
 
Objective: In this lesson you learned how to write and evaluate 

triple integrals in cylindrical and spherical coordinates. 
 
 
I.  Triple Integrals in Spherical Coordinates   
     (Pages 1038−1040) 
 
The rectangular conversion equations for cylindrical coordinates 

are x =          a aaa a               , y =           a aaa a         , and  

z =                   a                  . 

 
If f is a continuous function on the solid Q, the iterated form of  

the triple integral in cylindrical form is  

. 

 
To visualize a particular order of integration, it helps to view the 

iterated integral in terms of                                   aaaaa aaaaaaaa 

aaaaaaaaaaaa aaaaaa aaaaaaa aaaaaaaaa aa aaa aaaaa                  . 

For instance, in the order dr dθ dz, the first integration occurs 

             aa aaa aaaaaaaaaaa aa a aaaaa aaaaaa aaa a aaaa aaaaa aa 

a aaaaaaaaaa aaa aaaa aaaaaa aaa a aaaaaaa aaaaaaa aa a aaaaaaa 

aaa aaaaaa aaaaaa aaa a aaaaaaa                                                    . 

 
 
II.  Triple Integrals in Spherical Coordinates   
       (Pages 1041−1042) 
 
The rectangular conversion equations for spherical coordinates 

are x =          a aaa a aaa a               , y =          a aa a aaa a          , 

and z =                   a aaa a                  . 

 
The triple integral in spherical coordinates for a continuous 

function f defined on the solid region Q is given by 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to write and 
evaluate a triple integral 
in cylindrical coordinates 

What you should learn 
How to write and 
evaluate a triple integral 
in spherical coordinates 
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As with cylindrical coordinates, you can visualize a particular 

order of integration by         aaaaaaa aaa aaaaaaaa aaaaaaaa aaaaa 

aa aaaaa aaaaaaaa aaaaaaaaaaaa aaaaaa aaaaaaa aaaaaaaaa aa aaa 

aaaaa                                                                                          . 

 
 
Additional notes 
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Page(s) 
 
Exercises 
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Section 14.8    Change of Variables:  Jacobians 
 
Objective: In this lesson you learned how to use a Jacobian to 

change variables in a double integral. 
 
 
I.  Jacobians  (Pages 1045−1046) 
 
If ( , )x g u v=  and ( , )y h u v= , then the Jacobian of x and y with 

respect to u and v, denoted by ( , ) / ( , )x y u v∂ ∂ , is 

. 

 
In general, a change of variables is given by a one-to-one 

transformation T from a region S in the uv-plane to a region R in 

the xy-plane, to be given by                                                          p     

p                                                   , where g and h have continuous 

first partial derivatives in the region S. In most cases, you are 

hunting for a transformation in which                 uuuuuuuuuuuuu 

uuuuuuuuuuuuuuuuuuuuuuuuuuuu                       . 

 
 
II.  Change of Variables for Double Integrals   
       (Pages 1047−1049) 
 
Let R be a vertically or horizontally simple region in the xy-

plane, and let S be a vertically or horizontally simple region in 

the uv-plane. Let T from S to R be given by T(u, v) = (x, y) = 

(g(u, v), h(u, v)), where g and h have continuous first partial 

derivatives. Assume that T is one-to-one except possibly on the 

boundary of S. If f is continuous on R, and ( , ) / ( , )x y u v∂ ∂  is 

nonzero on S, then   

 

 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
concept of a Jacobian 

What you should learn 
How to use a Jacobian to 
change variables in a 
double integral 
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Additional notes 
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Chapter 15 Vector Analysis 
 
Section 15.1       Vector Fields 
 
Objective: In this lesson you learned how to sketch a vector field, 

determine whether a vector field is conservative, find a 
potential function, find curl, and find divergence. 

 
 
I.  Vector Fields  (Pages 1058−1061) 
 
A vector field over a plane region R is                 a aaaaaaaa a 

aaaa aaaaaaa a aaaaaa aaaa aa aaaa aaaaa aa a                             . 

 
A vector field over a solid region Q in space is          a aaaaaaa 

a aaaa aaaaaaa a aaaaaa aaaa aa aa aa aaaaaa aa a                       . 

 
A vector field ( , , ) ( , , ) ( , , ) ( , , )x y z M x y z N x y z P x y z= + +F i j k  is 

continuous at a point if and only if             aaaa aa aaa aaaaaaaaa 

aaaaaaaaa aa aa aaa a aa aaaaaaaaaa aa aa aaaaa                          . 

 
List some common physical examples of vector fields and give a 
brief description of each. 
 
aaaaaaaa aaaaaa aaaaaaaa aaa aaaaaaa aa aaaaaaa aa aaaaaaaaa 
aa aaa aaaaa aa aa aaaaaa 
 
 
 
aaaaaaaaaaaaa aaaaaa aaa aaaaaaa aa aaaaaaaa aaa aa 
aaaaaaaaaaaa 
 
 
aaaaaaaa aaaaa aaaaaa aaa aaaaaaa aa aaaaaaaaa aaaa 
 
 
 
 
 
Let ( ) ( ) ( ) ( )t x t y t z t= + +r i j k  be a position vector. The vector 

field F is an inverse square field if 

, where k is a real number 

and u = r/||r|| is a unit vector in the direction of r. 

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
How to understand the 
concept of a vector field 
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Because vector fields consist of infinitely many vectors, it is not 

possible to create a sketch of the entire field. Instead, when you 

sketch a vector field, your goal is to                                   aaaaaa 

aaaaaaaaaaaaaa aaaaaaaa aaaa aaa aaaaaaaaa aaa aaaaa                . 

 
 
II.  Conservative Vector Fields  (Pages 1061−1063) 
 
The vector field F is called conservative if             aaaaa aaaaaa 

a aaaaaaaaaaaaaa aaaaaaaa a aaaa aaaa a a aa                 . The 

function f is called the              aaaaaa aaaaaaaa                    for F. 

 
Let M and N have continuous first partial derivatives on an open 

disk R. The vector field given by F(x, y) = Mi + Nj is 

conservative if and only if . 

 
 
III.  Curl of a Vector Field  (Pages 1064−1065) 
 
The curl of a vector field F(x, y, z) = Mi + Nj +Pk is 
 

. 

 
If curl F = 0, then F is said to be               aaaaaaaaaaaa              . 
 
The cross product notation use for curl comes from viewing the 

gradient ∇f as the result of the                                  aaaaaaaaaaaa 

aaaaaaaa a                                     acting on the function f. 

 
The primary use of curl is in a test for conservative vector fields 

in space. The test states                             aaaa aaa a aaaaaa aaaaa 

aa aaaaaa aaa aaaa aa a aa aaaaa aaaaa aa aaa aaaaaa aa aaa aaaa 

aa a aa aaaaaaaaaaaa                                              . 

 
 
 
 

What you should learn 
How to determine 
whether a vector field is 
conservative 

What you should learn 
How to find the curl of a 
vector field 
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IV.  Divergence of a Vector Field  (Page 1066) 
 
The curl of a vector field F is itself             a aaaaa aaaaa             . 

Another important function defined on a vector field is 

divergence, which is               a aaaaaa aaaaaaaa                    . 

 
The divergence of F(x, y) = Mi + Nj is 

. 

The divergence of F(x, y, z) = Mi + Nj +Pk is 

. 

 

If div F = 0, then F is said to be            aaaaaaaaaa aaaa              . 

 
Divergence can be viewed as                 a aaaa aa aaaaaaaaaa aa a 

aa aaaaa aaa aaaaaa aaaaaa aaaaaaaaaaaa aaaaaaaaaa aa aaaaaa 

aaaaaaaaaa aaa aaaaaaaaaa aaaaaaaa aaa aaaa aa aaaaaaaa aaaa 

aaa aaaa aaaaaa aa a aaaaa                                                         . 

 
If F(x, y, z) = Mi + Nj +Pk is a vector field and M, N, and P have 

continuous second partial derivatives, then       aaaaaaa aa a a     . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What you should learn 
How to find the 
divergence of a vector 
field 
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Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 15.2    Line Integrals 
 
Objective: In this lesson you learned how to find a piecewise 

smooth parametrization, and write and evaluate a line 
integral. 

 
I.  Piecewise Smooth Curves  (Page 1069) 
 
A plane curve C given by ( ) ( ) ( )t x t y t= +r i j , a t b≤ ≤ , is 

smooth if                   aaaaa aaa aaaaa aaa aaaaaaaaaa aa aaa aa 

aaa aaa aaaaaaaaaaaaaa a aa aaa aa                        . A space 

curve C given by ( ) ( ) ( ) ( )t x t y t z t= + +r i j k , a t b≤ ≤ , is 

smooth if    aaaaaa aaaaaa aaa aaaaa aaa aaaaaaaaaa aa aaa aa 

aaa aaa aaaaaaaaaaaaaa a aa aaa aa                        . A curve C is 

piecewise smooth if                          aaa aaaaaaaa aaa aa aaa aa 

aaaaaaaaaaa aaaa a aaaaaa aaaaaa aa aaaaaaaaaaaaa                aa 

aaaa aa aaaaa a aa aaaaaa                                  . 

 
 
II.  Line Integrals  (Pages 1070−1073) 
 
If f is defined in a region containing a smooth curve C of finite 

length, then the line integral of f along C is given by 

 for a plane 

or by  

for space, provided this limit exists. 
 
Let f be continuous in a region containing a smooth curve C. If C 

is given by ( ) ( ) ( )t x t y t= +r i j , where a t b≤ ≤ , then 

 
If C is given by ( ) ( ) ( ) ( )t x t y t z t= + +r i j k , where a t b≤ ≤ , then 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand and 
use the concept of a 
piecewise smooth curve 

What you should learn 
How to write and 
evaluate a line integral 
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If ( , , ) 1f x y z = , the line integral gives                     aaa aaa 

aaaaaa aa aaa aaaaa a                               . 

 
 
III.  Line Integrals of Vector Fields  (Pages 1074−1076) 
 
Let F be a continuous vector field defined on a smooth curve C 

given by r(t), a ≤ t ≤ b. The line integral of F on C is given by  

 
 
IV.  Line Integrals in Differential Form  (Pages 1077−1078) 
 
If F is a vector field of the form F(x, y) = Mi + Nj, and C is given 

by ( ) ( ) ( )t x t y t= +r i j , then d⋅F r  is often written in differential 

form as             a aa a a aa            . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to write and 
evaluate a line integral of 
a vector field 

What you should learn 
How to write and 
evaluate a line integral in 
differential form 
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Section 15.3    Conservative Vector Fields and Independence 
     of Path 
 
Objective: In this lesson you learned how to use the Fundamental 

Theorem of Line Integrals, independence of path, and 
conservation of energy. 

 
I.  Fundamental Theorem of Line Integrals   
     (Pages 1083−1085) 
 
Let C be a piecewise smooth curve lying in an open region R and 

given by ( ) ( ) ( )t x t y t= +r i j , a t b≤ ≤ . The Fundamental 

Theorem of Line Integrals states that if F(x, y) = Mi + Nj is 

conservative in R, and M and N are continuous in R, then  

 

where f is a potential function of F. That is, F(x, y) = ∇f(x, y). 

 
The Fundamental Theorem of Line Integrals states that        aa aa 

aaaaaa aaaaa a aa aaaaaaaaaaaaa aaaa aaa aaaa aaaaaaaa aaaaaaa 

aaa aaa aaaaaa aa aaaaaa aaa aaaaaaaaaa aa aaa aaaaaa aa aaaaaa 

aaaaaaaa a aa aaaaa aaaaaa                                                           . 

 
 
II.  Independence of Path  (Pages 1086−1088) 
 

Saying that the line integral 
C

d⋅∫F r  is independent of path 

means that              aaa aaaaa aa aaa aaaa aaaaaaaa aa aaa aaaa 

aaa aaaaa aaaaaaaaa aaaaaa aaaaa a aaaa aaa aaaaa aaaaa aa a aa 

aaaaaaa aaaaa aaaaa aa a                                                   . 

 
If F is continuous on an open connected region, then the line 

integral 
C

d⋅∫F r  is independent of path if and only if              a aa 

aaaaaaaaaaaa                                . 

 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand and 
use the Fundamental 
Theorem of Line 
Integrals 

What you should learn 
How to understand the 
concept of independence 
of path 
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A curve C given by r(t) for a t b≤ ≤  is closed if  

            aaaa a aaaa           . 

 
Let F(x, y, z) = Mi + Nj + Pk have continuous first partial 
derivatives in an open connected region R, and let C be a 
piecewise smooth curve in R. The following conditions are 
equivalent. 
 
1.  a aa aaaaaaaaaaaaa aaaa aaa a a aa aaa aaaa aaaaaaaa aa 
 
2.  aa aaaaaaaaaaa aa aaaaa 
 
 
3.  a a aaa aaaaa aaaaaa aaaaa a aa aa 
 
 
 
 
III.  Conservation of Energy  (Page 1089) 
 
State the Law of Conservation of Energy. 
 
aa a aaaaaaaaaaaa aaaaa aaaaaa aaa aaa aa aaa aaaaaaaaa aaa 
aaaaaaa aaaaaaaa aa aa aaaaaa aaaaaaa aaaaaaaa aaaa aaaaa aa 
aaaaaa 
 
 
 
The kinetic energy of a particle of mass m and speed v is 

                 a a aaaaaa               . 

 
The potential energy p of a particle at point (x, y, z) in a 

conservative vector field F is defined as                aaaa aa aa a 

aaaaa aa aa                    , where f is the potential function for F. 

 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to understand the 
concept of conservation 
of energy 
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Section 15.4    Green’s Theorem 
 
Objective: In this lesson you learned how to evaluate a line integral 

using Green’s Theorem. 
 
 
I.  Green’s Theorem  (Pages 1093−1098) 
 
A curve C given by ( ) ( ) ( )t x t y t= +r i j , where a t b≤ ≤ , is 

simple if                                                                           —that is, 

r(c) ≠ r(d) for all c and d in the open interval (a, b). A plane 

region R is simply connected if                                                   d 

R                                                                                                . 

 
Let R be a simply connected region with a piecewise smooth 

boundary C, oriented counterclockwise (that is, C is traversed 

once so that the region R always lies to the left). Then Green’s 

Theorem states that if M and N have continuous first partial 

derivatives in an open region containing R, then 

. 

 
Line Integral for Area 

If R is a plane region bounded by a piecewise smooth simple 

closed curve C, oriented counterclockwise, then the area of R is 

given by . 

 
 
II.  Alternative Forms of Green’s Theorem   
       (Pages 1098−1099) 
 
With appropriate condition on F, C, and R, you can write 

Green’s Theorem in the following vector form  

 

 

 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use Green’s 
Theorem to evaluate a 
line integral 

What you should learn 
How to use alternative 
forms of Green’s 
Theorem 
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For the second vector form of Green’s Theorem, assume the 

same conditions for F, C, and R. Using the arc length parameter 

s for C, you have . So, a unit 

tangent vector T to curve C is given by 

. The outward unit 

normal vector N can then be written as 

. The second alternative form 

of Green’s Theorem is given by 

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 



Section 15.5     Parametric Surfaces  289 

Larson/Edwards   Calculus 9e   Notetaking Guide 
Copyright © Cengage Learning. All rights reserved. 

Section 15.5    Parametric Surfaces 
 
Objective: In this lesson you learned how to sketch a parametric 

surface, find a set of parametric equations to represent a 
surface, find a normal vector, find a tangent plane, and 
find the area of a parametric surface. 

 
I.  Parametric Surfaces  (Pages 1102−1103) 
 
Let x, y, and z be functions of u and v that are continuous on a 

domain D in the uv-plane. The set of points (x, y, z) given by 

( , ) ( , ) ( , ) ( , )u v x u v y u v z u v= + +r i j k  is called a            aaaaaaaaa 

aaaaaaa                       . The equations x = x(u, v), y = y(u, v), and 

z = z(u, v) are the              aaaaaaaaaa aaaaaaaaa                 for the 

surface. 

 
If S is a parametric surface given by the vector-valued function r, 

then S is traced out by                aaa aaaaaaaa aaaaaa aaaa aa 

aaaaa aaaaaaaaaa aaa aaaaaa a                         . 

 
 
II.  Finding Parametric Equations for Surfaces  (Page 1104) 
 
Writing a set of parametric equations for a given surface is 

generally more difficult than identifying the surface described by 

a given set of parametric equations. One type of surface for 

which this problem is straightforward, however is the surface 

given by ( , )z f x y= . You can parameterize such a surface as 

. 

 
 
III.  Normal Vectors and Tangent Planes  (Pages 1105−1106) 
 
Let S be a smooth parametric surface 

( , ) ( , ) ( , ) ( , )u v x u v y u v z u v= + +r i j k  defined over an open region 

D in the uv-plane. Let (u0, v0) be a point in D. A normal vector at 

the point 0 0 0 0 0 0 0 0 0( , , ) ( ( , ), ( , ), ( , ))x y z x u v y u v z u v=  is given by  

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand the 
definition of a parametric 
surface, and sketch the 
surface 

What you should learn 
How to find a set of 
parametric equations to 
represent a surface 

What you should learn 
How to find a normal 
vector and a tangent 
plane to a parametric 
surface 
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. 

 
 
 
IV.  Area of a Parametric Surface  (Pages 1106−1108) 
 
Let S be a smooth parametric surface 

( , ) ( , ) ( , ) ( , )u v x u v y u v z u v= + +r i j k  defined over an open region 

D in the uv-plane. If each point on the surface S corresponds to 

exactly one point in the domain D, then the surface area S is 

given by , 

where ru =  and  

rv = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to find the area of a 
parametric surface 
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Section 15.6    Surface Integrals 
 
Objective: In this lesson you learned how to evaluate a surface 

integral, determine the orientation of a surface, and 
evaluate a flux integral. 

 
I.  Surface Integrals  (Pages 1112−1115) 
 
Let S be a surface with equation z = g(x, y) and let R be its 

projection onto the xy-plane. If g, gx, and gy are continuous on R 

and f is continuous on S, then the surface integral of f over S is 

 

 
II.  Parametric Surfaces and Surface Integrals  (Page 1116) 
 
For a surface S given by the vector-valued function 

( , ) ( , ) ( , ) ( , )u v x u v y u v z u v= + +r i j k  defined over a region D in 

the uv-plane, you can show that the surface integral of f(x, y, z) 

over S is given by 

 

 
III.  Orientation of a Surface  (Page 1117) 
 
Unit normal vectors are used to             aaaaaa aa aaaaaaaaaaa aa 

a aaaaaaa a aa aaaa                   . A surface is called orientable if  

                            a aaaa aaaaaa aaaaaa a aaa aa aaaaaaa aa aaaaa 

aaaaaaaaaaa aaaaa aa a aa aaaa a aaa aaaa aaa aaaaaa aaaaaaa 

aaaa aaaaaaaaaaaa aaaa aaa aaaaaa a                                             . 

If this is possible, S is called                 aa aaaaaaa aaaaaaa          . 

 
  
IV.  Flux Integrals  (Pages 1118−1121) 
 
Suppose an oriented surface S is submerged in a fluid having a 

continuous velocity field F. Let ΔS be the area of a small patch 

of the surface S over which F is nearly constant. Then the 

amount of fluid crossing this region per unit time is 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to evaluate a surface 
integral as a double 
integral 

What you should learn 
How to evaluate a surface 
integral for a parametric 
surface 

What you should learn 
How to understand the 
concept of a flux integral 

What you should learn 
How to determine the 
orientation of a surface 
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approximated by                     aaa aaaaaa aa aaa aaaaaa aa aaaaaa 

a a a                           . Consequently, the volume of fluid 

crossing the surface S per unit time is called          aaa aaaa aa a 

aaaaaa a              . 

 
Let F(x, y, z) = Mi + Nj + Pk, where M, N, and P have 

continuous first partial derivatives on the surface S oriented by a 

unit normal vector N. The flux integral of F across S is given 

by . 

 
Let S be an oriented surface given by z = g(x, y) and let R be its 

projection onto the xy-plane. If the surface is oriented upward, 

S

dS⋅ =∫∫F N . If 

the surface is oriented downward, 
S

dS⋅ =∫∫F N  

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 15.7    Divergence Theorem 
 
Objective: In this lesson you learned how to use the Divergence 

Theorem and how to use it to calculate flux. 
 
 
I.  Divergence Theorem  (Pages 1124−1128) 
 
The Divergence Theorem gives the relationship between          a 

aaaaaa aaaaaaaa aaaa a aaaaa aaaaaa a aaa a aaaaaaa     aaaaaaaa 

aaaa aaa aaaaaaa aa a                                       . 

 
In the Divergence Theorem, the surface S is closed in the sense 

that it                                  aaaaa aaa aaaaaaaa aaaaaaaa aa aaa 

aaaaa a                                     . 

 
Let Q be a solid region bounded by a closed surface S oriented 

by a unit normal vector directed outward from Q. The 

Divergence Theorem states that if F is a vector field whose 

component functions have continuous first partial derivatives in 

Q, then . 

 
 
 
II.  Flux and the Divergence Theorem  (Pages 1129−1130) 
 
Consider the two sides of the equation 

div 
S Q

dS dV⋅ =∫∫ ∫∫∫F N F . The flux integral on the left 

determines                 aaa aaaaa aaaaa aaaa aaaaaa aaa aaaaaaa a 

aaa aaaa aa aaaa                              . This can be approximated by  

    aaaaaaa aaa aaaaa aaaa aaaaaa aaaaa aa  aaa aa aaa aaaaaaa     . 

The triple integral on the right measures                         aaaa aaaa 

aaaaa aaaa aaaaaa aa aaa aa aaaaaaaaaaa aaa a  aaa aa aaaaa aaaa 

aaa aaa aaa aaaaa aaaaa aa aaaaaa aaa                                        . 

 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand and 
use the Divergence 
Theorem 

What you should learn 
How to use the 
Divergence Theorem to 
calculate flux 
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The point (x0, y0, z0) in a vector field is classified as a source if  

            aaa a a a               ; a sink if             aaa a a a              , or 

incompressible if                   aaa a a a                    . 

 
In hydrodynamics, a source is a point at which             aaaaaaaaa 

aaaaa aa aaaaaaaaaa aa aaaaa aaaaaaaaaa aa aaa aaaaaa aaaaaaaa 

aa aaa aaaaa               . A sink is a point at which                       aa 

aa aaaaaaaaaa aa aaaaa aaaaaaa                                       . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 15.8    Stokes’s Theorem 
 
Objective: In this lesson you learned how to use Stokes’s Theorem 

to evaluate a line integral or a surface integral and how 
to use curl to analyze the motion of a rotating liquid. 

 
 
I.  Stokes’s Theorem  (Pages 1132−1134) 
 
Stokes’s Theorem gives the relationship between                      a 

aaaaaaa aaaaaaaa aaaa aa aaaaaaaa aaaaaaa a aaa a aaaa aaaaaaaa 

aaaaa a aaaaaa aaaaa aaaaa a aaa aaaaaaaa aa a                          . 

 
The positive direction along C is       aaaaaaaaaaaaaaaa     relative 

to the normal vector N. That is, if you imagine grasping the 

normal vector N with your right hand, with your thumb pointing 

in the direction of N, your fingers will point                        aa aaa 

aaaaaaaa aaaaaaaaa a                                               . 

 
Let S be an oriented surface with unit normal vector N, bounded 

by a piecewise smooth simple closed curve C with a positive 

orientation. Stokes’s Theorem states that if F is a vector field 

whose component functions have continuous first partial 

derivatives on an open region containing S and C, then 

. 

 
 
II.  Physical Interpretation of Curl  (Pages 1135−1136) 
 
curl F(x, y, z) ⋅ N =             aaaaa aa a aaaaa a aa aaa aa aa         . 

 
The rotation of F is maximum when              aaaa a aaa a aaaa 

aaa aaaa aaaaaaaaa                                       . Normally, this 

tendency to rotate will vary from point to point on the surface S, 

and Stokes’s Theorem says that the collective measure of this 

rotational tendency taken over the entire surface S (surface 

integral) is equal to                            aaa aaaaaaaa aa a aaaaa aa 

aaaaaaaaa aa aaa aaaaaaaa a aaaaa aaaaaaaaa                               . 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to understand and 
use Stokes’s Theorem 

What you should learn 
How to use curl to 
analyze the motion of a 
rotating liquid 
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If curl F = 0 throughout region Q, the rotation of F about each 

unit normal N is                   a                   . That is, F is  

              aaaaaaaaaaaa                . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Chapter 16 Additional Topics in Differential 
   Equations 
 
Section 16.1       Exact First-Order Equations 
 
Objective: In this lesson you learned how to recognize and solve exact 

differential equations. 
 
I.  Exact Differential Equations  (Pages 1144−1146) 
 
The equation ( , ) ( , ) 0M x y dx N x y dy+ =  is an exact differential 

equation if                      aaaaa aaaaaa a aaaaaaaa a aa aaa aaaaaa 

a aaa a aaaaaa aaaaaaaaaa aaaaaaa aaaaaaaaaaa aaaa aaaa aaa aa 

a aaaa aa aaa aa aa a aaaa aa                                                       . 

The general solution of the equation is               aaaa aa a a         . 

 
State the Test for Exactness. 
 
aaa a aaa a aaaa aaaaaaaaaa aaaaaaa aaaaaaaaaaa aa aa aaaa aaaa 
aa aaa aaaaaaaaaaaa aaaaaaaa aaaa aa aa a aaaa aa aa a a aa 
aaaaa aa aaa aaaa aa aaaaa a aaaaaa 
 
 
 
 
 
A               aaaaaaaaa aaaaaaaaaaaa aaaaaaaa                 is actually 

a special type of an exact equation. 

 
Example 1: Test whether the differential equation 

( )3 41
4(5 ) 0x x y dx y x dy− + − =  is exact. 

 
 
 
 
 
 
 
 
 
A general solution ( , )f x y C=  to an exact differential equation 

can be found by                       aaa aaaaaa aaaa aa aaaa a aaaaaaaa 

aaaaaaaa aaa a aaaaaaaaaaaa aaaaaa aaaaa                                  . 

 

Course Number 
 
Instructor 
 
Date 
 

What you should learn 
How to solve an exact 
differential equation 
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II.  Integrating Factors  (Pages 1147−1148) 
 
If the differential equation ( , ) ( , ) 0M x y dx N x y dy+ =  is not 

exact, it may be possible to make it exact by            aaaaaaaaaaa 

aa aa aaaaaaaaaaa aaaaaa aaaa aaa aaaaa aa aaaaaa aa aaaaaaaaa 

aaaaaa aaa aaa aaaaaaaaaaaaaaaaaaaa                                           . 

 
Consider the differential equation ( , ) ( , ) 0M x y dx N x y dy+ = . If 

1 [ ( , ) ( , )] ( )
( , ) y xM x y N x y h x

N x y
− =  is a function of x alone, 

then  is an integrating factor. If 

1 [ ( , ) ( , )] ( )
( , ) x yN x y M x y k y

M x y
− =  is a function of y alone, 

then  is an integrating factor. 

 
 
Additional notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to use an integrating 
factor to make a 
differential equation 
exact 
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Section 16.2    Second-Order Homogeneous Linear 
   Equations 

 
Objective: In this lesson you learned how to solve second-order 

homogeneous linear differential equations and higher-
order homogeneous linear differential equations. 

 
I.  Second-Order Linear Differential Equations   
     (Pages 1151−1154) 
 
Let g1, g2, . . . gn and f be functions of x with a common (interval) 

domain. An equation of the form 
( ) ( 1) ( 2)

1 2 1( ) ( ) ( ) ( ) ( )n n n
n ny g x y g x y g x y g x y f x− −

− ′+ + + + + =L  

is called a             aaaaaa aaaaaaaaaaaa aaaa aa aaaaa a               . 

If f(x) = 0, the equation is                   aaaaaaaaaaa                 ; 

otherwise, it is                  aaaaaaaaaaaaaa                    . 

 
The functions y1, y2, . . . , yn are         aaaaaaaa aaaaaaaaaa          if 

the only solution of the equation 1 1 2 2 0n nC y C y C y+ + + =L  is 

the trivial one, 1 2 0nC C C= = = =L . Otherwise, this set of 

functions is                 aaaaaaaa aaaaaaaaa               . 

 
If y1 and y2 are linearly independent solutions of the differential 

equation 0y ay by′′ ′+ + = , then the general solution is 

, where C1 and C2 are constants. 

In other words, if you can find two linearly independent 

solutions, you can obtain the general solution by              aaaaaaa 

a aaaaaa aaaaaaaaaaa aa aaa aaa aaaaaaaaa                     . 

 
The characteristic equation of the differential equation 

0y ay by′′ ′+ + =  is                 aa a aa a a a a                . 

 
The solutions of 0y ay by′′ ′+ + =  fall into one of the following 
there cases, depending on the solutions of the characteristic 
equation, 2 0m am b+ + = . 
 
1.  aaaaaaaa aaaa aaaaa  aa aa a aa aaa aaaaaaaa aaaa aaaaa aa 
aaa aaaaaaaaaaaaaa aaaaaaaaa aaaa aaa aaaaaaa aaaaaaaa aa aa 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to solve a second-
order linear differential 
equation 
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2.  aaaaa aaaa aaaaa  aa aa a aa aaa aaaaa aaaa aaaaa aa aaa 
aaaaaaaaaaaaaa aaaaaaaaa aaaa aaa aaaaaaa aaaaaaaa aa aa 
 
 
3.  aaaaaaa aaaaa  aa aa a a a aa aaa aa a a a aa aaa aaaaaaa 
aaaaa aa aaa aaaaaaaaaaaaaa aaaaaaaaa aaaa aaa aaaaaaa 
aaaaaaaa aa aa 
 
 
 
II.  Higher-Order Linear Differential Equations  (Page 1155) 
 
Describe how to solve higher-order homogeneous linear 
differential equations. 
 
aaa aaaaaaaaaaaa aaaaaaaaaaa aaaaaa aaaaaaaaaaaa aaaaaaaaaa 
aaa aaa aaaa aaa aaaaaaa aaaaaaaa aa aaaa aaa aaaa aaa aa aaa aa 
aaa aaaaaaaaaaaa aaaaaaaaaa aaaa aaa aaa aaaaa aa aaaaaaaaaaa 
aaa a aaaaa aa aaa aaaaaaaaaaaaaa aaaaaaaaa aaaaa aaaaa aa 
aaaaa a aaaaaa aaa aaaa a aaaaaaaa aaaaaaaaaaa aaaaaaaaaa aa a 
aaaaaaaaaa aaa aaaaa aaaaaaaaaa aa aaaa aaaa aaaaaaaaa aa 
aaaaa aa aaaaaa aaaaaa aaaaa aa aaa aaaaaaaaaaaaaa aaaaaaaa 
aaa aaaaa aaaa aaaa aaaaaa aaaa aaaa aaaaaaaa aaa aaaaaaaa 
aaaaaaaaaaa aaaaaaaaa aaa aaaaaa aa aaaaaaaaaaa aa aaaaaaaaaa 
aaaaaa aa aa 
 
 
 
 
III.  Application  (Pages 1156−1157) 
 
Describe Hooke’s Law. 
 
aaaaaaa aaa aaaaaa aaaa a aaaaaa aaaa aa aaaaaaaaa aaa 
aaaaaaaaaaa a aaaaa aaaa aaa aaaaaaa aaaaaa a aaaaa aa aaaaaaa 
aaaaaa aa aaa aaaaaaa aaaaaa aa a aaaaa a aaaa aa aaaaaaaaaaaa 
aa aa aaaa aaa aaaa a aaaa aaaaa a aa aaa aaaaaa aaaaaaaa aaa 
aaaaaaaaa aaa aaaaaaaaa aa aaa aaaaa aaaaaaa 
 
 
The equation that describes the undamped motion of a spring is 

. 

 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 

What you should learn 
How to solve a higher-
order linear differential 
equation 

What you should learn 
How to use a second-
order linear differential 
equation to solve an 
applied problem 
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Section 16.3    Second-Order Nonhomogeneous Linear 
   Equations 

 
Objective: In this lesson you learned how to solve second-order 

nonhomogeneous linear differential equations. 
 
 
I.  Nonhomogeneous Equations  (Page 1159) 
 
Let ( )y ay by F x′′ ′+ + =  be a second-order nonhomogeneous 

linear differential equation. If yp is a particular solution of this 

equation and yh is the general solution of the corresponding 

homogeneous equation, then  

is the general solution of the nonhomogeneous equation. 

 
 
II.  Method of Undetermined Coefficients  (Pages 1160−1162) 
 
If F(x) in ( )y ay by F x′′ ′+ + =  consists of sums or products of 

nx , mxe , cos xβ , or sin xβ , you can find a particular solution 

py  by the method of              aaaaaaaaaaaa aaaaaaaaaaa              .  
 
Describe how to use this method. 
 
aaa aaaaaa aa aaaa aaaaaa aa aa aaaaa aaaa aaa aaaaaaaa aa aa a 
aaaaaaaaaaa aaaa aa aaaaa aa aaaa a aaaa aaaaaa aa a aaa a aa a 
aa aa aaaa a aaaaa aaaaaa aa aa aaaa a aaaa aaa aa aaa aaaaa aa 
aaaaaaaaaaaaa aaaaaaaaa aaa aaaaaaaaaaaa aaa aaa aaaaaaaaaaa 
aaaaaaaaa 
 
 
 
 
III.  Variation of Parameters  (Pages 1163−1164) 
 
Describe the conditions to which the method of variation of 
parameters is best suited. 
 
aaa aaaa aaaaaaa aaaaaa aaaaaa aaaaaaaaa aa aaaaaaaaaa aa aaaa 
aaaa aaa aaaaaaaaa aaaa aa aaa aaa aaa a aaaaa aaaaaaaaaa 
aaaaaaaaaaa aa aaa aaaa a aaaaaaaa aaaaaaaa 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to recognize the 
general solution of a 
second-order 
nonhomogeneous linear 
differential equation 

What you should learn 
How to use the method of 
undetermined 
coefficients to solve a 
second-order 
nonhomogeneous linear 
differential equation 

What you should learn 
How to use the method of 
variation of parameters to 
solve a second-order 
nonhomogeneous linear 
differential equation 
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To use the method of variation of parameters to find the general 
solution of the equation ( )y ay by F x′′ ′+ + = , use the following 
steps. 
 
1.  aaaa aa 
 
2.  aaaaaaa aaa aaaaaaaaa aa aaaaaaaaa aa aaaa aa 
 
3.  aaaaa aaa aaaaaaaaa aaaaaa aaa a aaa aa 
  
 
 
4.  aaaaaaaaa aa aaaa aa aaa aaa aaa aaaaaaa aaaaaaaa aa a a aa a 
aaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework Assignment 
 
Page(s) 
 
Exercises 
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Section 16.4    Series Solutions of Differential Equations 
 
Objective: In this lesson you learned how to use power series to 

solve differential equations. 
 
 
I.  Power Series Solution of a Differential Equation   
    (Page 1167−1168) 
 
Recall that a power series represents a function f on     aa aaaaaaa 

aa aaaaaaaaaaa                 , and you can successively differentiate 

the power series to obtain a series for f ′, f ″, and so on. 

 
Describe how to use power series in the solution of a differential 
equation. 
 
aaaaaa aaaa aaaa 
 
 
 
 
 
 
 
 
 
II.  Approximation by Taylor Series  (Page 1169) 
 
What type of series can be used to solve differential equations 
with initial conditions? 
 
aaaaaa aaaaaa 
 
 
 
Describe how to use this method. 
 
aaaaaaa aaaa aaaa 
 
 
 
 
 
 
 
 
 
 
 

Course Number 
 
Instructor 
 
Date 

What you should learn 
How to use a power 
series to solve a 
differential equation 

What you should learn 
How to use a Taylor 
series to find the series 
solution of a differential 
equation 
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Additional notes 
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Page(s) 
 
Exercises 


















